
Здесь интеграл берется по замкнутому контуру Г (см. фиг. 19.7), проходящему через оба перехода. Интеграл от Аэто магнитный поток Ф через контур. Итак, две дельты оказываются отличающимися на 2 q e / ℏ , умноженное на магнитный поток Ф, который проходит между двумя ветвями схемы:
(19.51)
Изменяя магнитное поле в схеме, я смогу контролировать эту разность фаз. Я ее прилажу так, чтобы посмотреть, проявится ли в полном токе, текущем сквозь оба перехода, интерференция между его частями. Полный ток равен сумме J a и J b . Для удобства я приму

Тогда
(19.52)
Мы не знаем, каково значение δ 0, и природа здесь может, в зависимости от обстоятельств, вытворять все, что ей заблагорассудится. В частности, δ 0может зависеть от прилагаемого к переходам внешнего напряжения. Но что бы мы ни делали, sinδ 0не окажется больше единицы. Значит, предельно сильный ток для каждого данного Ф дается формулой

Этот предельный ток меняется, смотря по тому, каково Ф, и сам достигает максимума всякий раз, когда

где n — целое число. Иными словами, ток достигает своего максимума, когда зацепляющийся за схему поток принимает те самые квантованные значения, которые мы получили в уравнении (19.30)!
Ток Джозефсона через двойной переход недавно был измерен [103] Jaklevic, Lambe, Silver, Mercereau, Phys. Rev. Letters, 12, 159 (1964).
как функция магнитного поля в области между ветвями. Результаты приведены на фиг. 19.8.

Фиг. 19.8. Запись тока через два параллельных перехода Джозефсона как функции магнитного поля в области между двумя переходами.
Здесь мы видим общий фон от токов, вызываемых различными эффектами, которыми мы пренебрегли, но быстрые колебания тока при изменении магнитного поля объясняются наличием интерференционного члена cos ( q e Ф / ℏ ) в (19.52).
Один из самых интригующих вопросов квантовой механики— это вопрос о том, существует ли векторный потенциал в том месте, где нет поля [104] Jaklevic, Lambe, Silver, Mercereau, Phys. Rev. Letters, 12, 274 (1964).
. Опыт, который я только что описал, был проделан тоже с узеньким соленоидом, помещенным между двумя переходами, так что заметное магнитное поле Вбыло только внутри соленоида, а на сверхпроводящие провода его попадало пренебрежимо мало. И вот оказалось, что сила тока колеблется с изменением потока магнитного поля внутри этого соленоида, даже если само поле и не касается проводов. Это еще одно доказательство «физической реальности» векторного потенциала [см. гл. 15, § 5 (вып. 6)].
Я не знаю, что теперь на очереди. Но посмотрите-ка, что можно было бы сделать. Во-первых, заметьте, что интерференция между двумя переходами может быть применена для создания чувствительного магнитометра. Если площадь, охватываемая двумя переходами, равна, скажем, 1 мм 2, то максимумы на кривой фиг. 19.8 будут отстоять друг от друга на 2·10 -5 гс . Одну десятую промежутка между пиками запросто можно заметить; значит, таким соединением можно будет измерять поля величиной в 2·10 -6 гс , или замерять большие поля со столь же хорошей точностью. Можно даже пойти дальше. Представим, например, что мы вплотную друг к другу на равных расстояниях расставили 10—20 переходов. Тогда получится интерференция на 10—20 щелях, и при изменении магнитного поля мы получим очень резкие максимумы и минимумы. Вместо интерференции на двух щелях у нас будет двадцати-, а может быть, и стощелевой интерферометр для измерения магнитного поля. Вероятно, можно предсказать, что измерения магнитных полей при использовании квантовомеханической интерференции станут почти такими же точными, как измерения длин световых волн.
Читать дальше