Ричард Фейнман - Том 3. Квантовая механика

Здесь есть возможность читать онлайн «Ричард Фейнман - Том 3. Квантовая механика» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Том 3. Квантовая механика: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Том 3. Квантовая механика»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Повторить

Том 3. Квантовая механика — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Том 3. Квантовая механика», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Том 3 Квантовая механика - изображение 61(2.10)

Когда же имеются две частицы, то вероятность рассеяния а в dSb в dS 2будет

211 Если нам нужна вероятность того что обе частицы и а и b попали в - фото 62(2.11)

Если нам нужна вероятность того, что обе частицы (и а , и b ) попали в счетчик, мы должны будем проинтегрировать dSdS 2по всей площади Δ S ; получится

Заметим кстати что это равно просто р а р b в точности так как если бы мы - фото 63

Заметим, кстати, что это равно просто р а · р b в точности так, как если бы мы предположили, что частицы а и b действуют независимо друг от друга.

Однако, когда две частицы тождественны, имеются две неразличимые возможности для каждой пары элементов поверхности dSdS 2. Частица а , попадающая в dS 2, и частица b , попадающая в dS 1, неотличимы от а в dS 1и от b в dS 2, так что амплитуды этих процессов будут интерферировать. (Когда у нас были две различные частицы, то, хотя мы на самом деле не заботились о том, какая из них куда попадает в счетчике, мы все же в принципе могли это узнать; так что интерференции не было. А для тождественных частиц мы и в принципе не можем этого сделать.) Мы должны тогда написать, что вероятность того, что пара частиц очутится в dSdS 2, есть

213 Однако сейчас интегрируя по поверхности счетчика нужно быть - фото 64(2.13)

Однако сейчас, интегрируя по поверхности счетчика, нужно быть осторожным. Пустив dSdS 2странствовать по всей площади Δ S , мы бы сосчитали каждую часть площади дважды , поскольку в (2.13) входит все, что может случиться [4] Перестановка dS 1 и dS 2 в (2.11) приводит к другому событию, так что оба элемента поверхности обязаны пройтись по всей площади счетчика. В (2.13) мы рассматриваем dS 1 и dS 2 как пару и включаем все, что может случиться. Если интегралы опять включают все, что случится, когда dS 1 и dS 2 поменяются местами, то все считается дважды. с каждой парой элементов поверхности dSdS 2. Но интеграл можно все равно подсчитать, если учесть двукратный счет, разделив результат пополам. Тогда мы получим, что Р 2для тождественных бозе-частиц есть

214 И опять это ровно вдвое больше того что мы получили в 212 для - фото 65(2.14)

И опять это ровно вдвое больше того, что мы получили в (2.12) для различимых частиц.

Если вообразить на мгновение, что мы откуда-то знали, что канал b уже послал свою частицу в своем направлении, то можно сказать, что вероятность того, что вторая частица направится в ту же сторону, вдвое больше того, чего можно было бы ожидать, если бы мы посчитали это событие независимым. Таково уж свойство бозе-частиц, что если есть одна частица в каких-то условиях, то вероятность поставить в те же условия вторую вдвое больше, чем если бы первой там не было. Этот факт часто формулируют так: если уже имеется одна бозе-частица в данном состоянии, то амплитуда того, что туда же, ей на голову, можно будет поместить вторую, в √2 раз больше, чем если бы первой там не было. (Это неподходящий способ формулировать результат с той физической точки зрения, какую мы избрали, но, если это правило последовательно применять, оно все же приводит к верному результату.)

§ 3. Состояния с n бозе-частицами

Распространим наш результат на тот случай, когда имеются n частиц. Вообразим случай, изображенный на фиг. 2.4.

Фиг 24 Рассеяние n частиц в близкие конечные состояния Есть n частиц а - фото 66

Фиг. 2.4. Рассеяние n частиц в близкие конечные состояния.

Есть n частиц а, b, с , ..., которые рассеиваются в направлениях 1, 2, 3, ..., n . Все n направлений смотрят в небольшой счетчик, который стоит где-то поодаль. Как и в предыдущем параграфе, выберем нормировку всех амплитуд так, чтобы вероятность того, что каждая частица, действуя по отдельности, попадет в элемент поверхности dS счетчика, была равна

Том 3 Квантовая механика - изображение 67

Сперва предположим, что частицы все различимы, тогда вероятность того, что n частиц будут одновременно зарегистрированы в n разных элементах поверхности, будет равна

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Том 3. Квантовая механика»

Представляем Вашему вниманию похожие книги на «Том 3. Квантовая механика» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Том 3. Квантовая механика»

Обсуждение, отзывы о книге «Том 3. Квантовая механика» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x