Проблема телевидения намного труднее. Когда электронный луч бежит по экрану телевизионной трубки, он создает множество светлых и темных точек. Эти светлые и темные точки и есть «сигналы». Обычно, чтобы «показать» весь кадр, лучу требуется примерно в тридцатую долю секунды пробежать 500 строк. Пусть разрешение по горизонтали и по вертикали более или менее одинаково, т. е. на миллиметр каждой строки приходится ровно столько же точек, сколько строк приходится на миллиметр высоты. Нужно, чтобы мы могли различать последовательность светлое — темное, светлое — темное, светлое — темное на протяжении 500 линий. Чтобы это можно было сделать с помощью косинусообразной волны, требуется длина волны, т. е. расстояние от максимума до минимума, соответствующая длине 1/250 части экрана. Таким образом, получается 250x500x30 «единичек информации» в секунду, поэтому высшая частота, которую нужно передать, оказывается равной приблизительно 4 Мгц . На самом деле, чтобы отделить телевизионные станции одну от другой, мы должны использовать несколько большую ширину — около 6 Мгц . Часть ее используется для передачи звукового сопровождения и другой информации. Таким образом, телевизионный канал имеет ширину 6 Мгц . Разумеется, модулировать с частотой, превышающей частоту несущей волны, невозможно, поэтому телевизионные передачи нельзя вести на частоте, например, 800 кгц .
Во всяком случае, телевизионная полоса начинается с частоты 54 Мгц . Первый телевизионный канал в Соединенных Штатах работает в полосе от 54 до 60 Мгц , т. е. имеет ширину 6 Мгц [37] В Советском Союзе изображение имеет 625 строк и ширина каналов несколько больше.— Прим ред.
. «Постойте,— можете сказать вы,— ведь только сейчас мы доказали, что боковые полосы должны быть с обеих сторон, а поэтому ширина должна быть вдвое больше». Оказывается, радиоинженеры довольно хитрый народ. Если при анализе модулирующего сигнала использовать не только косинус, а косинус и синус, чтобы учесть разность фаз, то между высокочастотной и низкочастотной боковыми полосами обнаружится наличие определенного постоянного соотношения. Этим мы хотим сказать, что вторая боковая полоса не содержит никакой новой информации по сравнению с первой, так что одну из них вполне можно выкинуть. Приемник же устроен таким образом, что потерянная информация восстанавливается из несущей частоты и одной боковой полосы. Передача с помощью одной боковой полосы — очень интересный метод уменьшения ширины полосы, необходимой для передачи информации.
§ 4. Локализованный волновой пакет
Следующий вопрос, который мы хотим обсудить,— это интерференция волн как в пространстве, так и во времени. Предположим, что в пространстве распространяются две волны. Вы, конечно, знаете, что распространение волны в пространстве, например звуковой, можно описать с помощью экспоненты exp[i(ωt- kx )]. Такая экспонента удовлетворяет волновому уравнению при условии, что ω 2=k 2с 2, где с — скорость распространения волны. В этом случае экспоненту можно записать в виде ехр[ik(x- ct )], что является частным случаем общего решения f ( x - ct ). Такая экспонента должна описывать волну, распространяющуюся со скоростью ω/k, равной с , и поэтому здесь все в порядке.
Давайте теперь складывать две такие волны. Пусть первая волна распространяется с одной частотой, а вторая волна — с какой-то другой. Случай неравных амплитуд рассмотрите самостоятельно, хотя существенного отличия здесь нет. Таким образом, мы хотим сложить exp[i(ω 1t-k 1x)]+exp[ i (ω 2 t - k 2 x )]. Это можно сделать с помощью математики, аналогичной использованной нами при сложении двух сигналов. Если скорости с обеих волн одинаковы, то сделать это очень легко; за исключением того, что вместо t стоит t '= t - х / с , это будет то же самое, что мы недавно проделали:
(48.11)
При этом, естественно, мы получаем точно такие же модуляции, как и раньше, которые, однако, движутся вместе с волной. Другими словами, если сложить две волны, которые не просто осциллируют, но и перемещаются в пространстве, то получившаяся волна также будет двигаться с той же скоростью.
Хотелось бы обобщить это на случай волн, у которых отношение между частотой и волновым числом k не столь просто, например распространение волн в веществе с некоторым показателем преломления. В гл. 31 (вып. 3) мы уже изучали показатель преломления n и выяснили, что он связан с волновым числом следующим образом: k=nω/с. В качестве интересного примера мы нашли показатель преломления n для рентгеновских лучей:
Читать дальше