(48.12)
На самом деле в гл. 31 мы получали и более сложные формулы, однако эта ничуть не хуже, так почему бы нам не взять ее в качестве примера.
Нам известно, что даже в том случае, когда ω и k не пропорциональны друг другу, отношение ω/k все равно будет скоростью распространения данной частоты и данного волнового числа. Это отношение называется фазовой скоростью , т. е. скоростью, с которой движется фаза или узел отдельной волны:
(48.13)
Интересно, что, например, для случая распространения рентгеновских лучей в стекле эта фазовая скорость больше скорости света в пустоте [поскольку n, согласно (48.12), меньше единицы], а это несколько неприятно, ведь не думаем же мы, что можно посылать сигналы быстрее скорости света!
Обсудим теперь интерференцию двух волн, у которых значения ω и k связаны какой-то определенной зависимостью. Например, написанная ранее формула для показателя n говорит, что k есть определенная известная функция частоты ω. Для большей определенности давайте выпишем формулу зависимости k и ω в данной частной задаче:
(48.14)
где a = Nq e 2/2ε 0 m — постоянная. Во всяком случае, мы хотим сложить такие две волны, у которых для каждой частоты существует определенное волновое число.
Давайте сделаем это точно так же, как и при получении уравнения (48.7):
(48.15)
Таким образом, снова получается модулированная волна, распространяющаяся со средней частотой и средним волновым числом, однако сила ее меняется в соответствии с выражением, зависящим от разности частот и разности волновых чисел.
Рассмотрим теперь случай, когда разности между двумя волнами относительно малы. Предположим, что мы складываем две волны с приблизительно равными частотами, при этом (ω 1+ω 2)/2 практически равно каждой из частот ω. То же можно сказать и о (k 1+k 2)/2. Таким образом, скорость волны, быстрых осцилляции, узлов действительно остается равной ω/k. Но смотрите, скорость распространения модуляций не та же самая! Как нужно изменить х , чтобы сбалансировать некоторую величину времени t? Скорость этих модулирующих волн равна
(48.16)
Скорость движения модуляций иногда называют групповой скоростью . Если мы возьмем случай относительно малой разности между частотами и соответственно относительно малой разности между волновыми числами, то это выражение переходит в пределе в
(48.17)
Другими словами, чем медленнее модуляции, тем медленнее и биения, и вот что самое удивительное — существует определенная скорость их распространения, которая не равна фазовой скорости волны.
Групповая скорость равна производной ω по k, а фазовая скорость равна отношению ω/k.
Посмотрим, можно ли понять, почему так происходит. Рассмотрим две волны с несколько различными длинами, как это показано на фиг. 48.1. Они то совпадают по фазе, то различаются, то снова совпадают и т. д. Однако теперь эти волны в действительности представляют волны в пространстве, распространяющиеся с немного различными скоростями. Но поскольку фазовая скорость, скорость узлов этих двух волн, не в точности одинакова, то происходит нечто новое. Предположим, что мы едем рядом с одной из волн и смотрим на другую. Если бы они двигались с одинаковой скоростью, то вторая волна оставалась бы относительно нас там же, где и была с самого начала, поскольку мы едем как бы на гребне одной волны и видим гребень второй прямо около себя. Однако в действительности скорости не равны. Частоты немного отличаются друг от друга, а поэтому немного отличаются и скорости. Из-за этой небольшой разницы в скоростях другая волна либо медленно обгоняет нас, либо отстает. Что же с течением времени происходит с узлом? Если чуть-чуть продвинуть одну из волн, то узел при этом уйдет на значительное расстояние вперед (или назад), т. е. сумма этих двух волн имеет какую-то огибающую, которая вместе с распространением волн скользит по ним с другой скоростью. Групповая скорость является той скоростью, с которой передаются модулирующие сигналы.
Читать дальше