Ричард Фейнман - Том 1. Механика, излучение и теплота

Здесь есть возможность читать онлайн «Ричард Фейнман - Том 1. Механика, излучение и теплота» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Физика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Том 1. Механика, излучение и теплота: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Том 1. Механика, излучение и теплота»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Том 1. Механика, излучение и теплота — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Том 1. Механика, излучение и теплота», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Фиг 405 Функция распределения скоростей Заштрихованная площадь равна - фото 1032

Фиг. 40.5. Функция, распределения скоростей. Заштрихованная площадь равна f(u)du — это относительное число частиц, скорости которых заключены внутри отрезка du около точки u.

Если определить f ( u ) так, что относительное число молекул будет просто равно площади заштрихованного участка, то полная площадь под кривой — это все 100% молекул, т. е.

405 Теперь остается только найти это распределение сравнив его с - фото 1033(40.5)

Теперь остается только найти это распределение, сравнив его с результатом доказанной ранее теоремы. Сначала надо выяснить, как выразить через f ( u ) число молекул, проходящих за 1 сек через заданную площадку со скоростью, превышающей u?

Это число не равно интегралу u∫ ∞ f ( u ) du (хотя это первое, что приходит в голову), ведь нас интересует число молекул, проходящих через площадку за секунду . Более быстрые молекулы будут пересекать площадку, так сказать, чаще, чем более медленные, поэтому, чтобы найти число проходящих молекул, надо умножить плотность молекул на скорость. (Мы уже обсуждали это в предыдущей главе, когда подсчитывали число столкновений.)

Полное число молекул, проходящих через поверхность за время t , равно числу молекул, способных достигнуть поверхности, а это молекулы, проходящие к поверхности с расстояния ut . Таким образом, число молекул, достигающих площадки, определяется не просто числом молекул, движущихся с данной скоростью, а равно этому числу, отнесенному к единице объема, и умноженному на расстояние, которое они пройдут, прежде чем достигнут площадки, сквозь которую они, по-видимому, должны пройти, а это расстояние пропорционально u . Значит, нам предстоит вычислить интеграл от произведения и на f ( u ) du , взятый от u до бесконечности, причем мы уже знаем, что этот интеграл обязательно должен быть пропорционален ехр(- mu 2/2 kT ), а постоянную пропорциональности еще надо определить:

406 Если теперь продифференцировать интеграл по u то мы получим - фото 1034(40.6)

Если теперь продифференцировать интеграл по u , то мы получим подынтегральное выражение (со знаком минус, потому что u — это нижний предел интегрирования), а дифференцируя правую часть равенства, мы получим произведение u на экспоненту (и на некоторую постоянную). Сократим в обеих частях и , и тогда

407 Мы оставили в обеих частях равенства du чтобы помнить что это - фото 1035(40.7)

Мы оставили в обеих частях равенства du , чтобы помнить, что это распределение ; оно говорит нам об относительном числе молекул, имеющих скорость между u и u + du .

Постоянная С должна определиться из условия равенства интеграла единице в согласии с уравнением (40.5). Можно доказать [31] Чтобы вычислить этот интеграл, положим Тогда а это двойной интеграл в xy-плоскости. Но его можно вычислить и в полярных координатах: , что

Используя это обстоятельство легко найти С m 2π kT Поскольку - фото 1036

Используя это обстоятельство, легко найти С =√( m /2π kT ).

Поскольку скорость и импульс пропорциональны, можно утверждать, что распределение молекул по импульсам, отнесенное к единице импульсной шкалы, также пропорционально ехр(- к.э ./ kT ). Оказывается, что эта теорема верна также в теории относительности, если только формулировать ее в терминах импульсов, тогда как в терминах скоростей это уже не так; поэтому сформулируем все в терминах импульсов:

408 Это значит что мы установили что вероятности определяемые энергиями - фото 1037(40.8)

Это значит, что мы установили, что вероятности, определяемые энергиями разного происхождения (и кинетической и потенциальной), в обоих случаях выражаются одинаково: ехр(-энергия/kT); таким образом, наша замечательная теорема приобрела форму, весьма удобную для запоминания.

Однако пока мы говорили только о «вертикальном» распределении скоростей. Но мы можем спросить, какова вероятность того, что молекула движется в другую сторону? Конечно, эти распределения связаны друг с другом и можно получить полное распределение, исходя из какого-то одного, ведь полное распределение зависит только от квадрата величины скорости, а не от ее z-составляющей. Распределение по скоростям не должно зависеть от направления и определяться только функцией u 2— вероятностью величины скорости. Нам известно распределение z-составляющей, и мы хотим получить отсюда распределение других составляющих. В результате полное распределение по-прежнему пропорционально ехр(-к.э./kT), только теперь кинетическая энергия состоит из трех частей: mv x 2/2, mv y 2/2 и mv z 2/2, суммируемых в показателе экспоненты. А можно записать это и в виде произведения:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Том 1. Механика, излучение и теплота»

Представляем Вашему вниманию похожие книги на «Том 1. Механика, излучение и теплота» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Том 1. Механика, излучение и теплота»

Обсуждение, отзывы о книге «Том 1. Механика, излучение и теплота» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x