Если бывает необходимо точно описать, как происходит испарение, или вообще уточнить, как молекулы ведут себя в данных обстоятельствах, то поступать следует так. Прежде всего нужно как можно точнее узнать закон взаимодействия молекул V ( r ). Как это сделать — безразлично: можно вычислить потенциал с помощью квантовой механики или установить закон взаимодействия экспериментально. Но если даже закон взаимодействия молекул известен, нужно все же учесть, что дело идет о миллионах молекул и нам еще придется хватить горя при изучении функции ехр(—∑ V ij / kT ). Все же удивительно, что функция так проста и все как будто ясно, поскольку известен точный потенциал взаимодействия, а дело это оказывается невероятно сложным : трудность заключается в ужасающе большом числе переменных.
Но вопрос захватывающе интересен. Это один из примеров того, что называют «задачей многих тел», и он содержит много поистине увлекательных вещей. Одна-единственная формула, которую мы получим, решив задачу, должна содержать все детали, например переход газа в твердое состояние или возможные кристаллические строения твердого тела. Многие пытались ее сосчитать, но математические трудности уж очень велики, и дело не в трудности вывода общего закона, а просто в том, чтобы справиться с огромным числом переменных.
Вот и все, что касается распределения частиц в пространстве. На этом, собственно, и кончается классическая статистическая механика, ибо если нам известны силы, то в принципе мы можем найти пространственное распределение, а распределение скоростей находится сразу на все случаи жизни, оно не будет меняться от случая к случаю. Основная задача состоит в получении более конкретной информации из нашего формального решения: это и является основным занятием классической статистической механики.
§ 4. Распределение молекул по скоростям
Обсудим теперь распределение молекул по скоростям, потому что интересно, а иногда и полезно знать, какая часть молекул движется с той или иной скоростью. Чтобы выяснить это, можно использовать те знания, которые мы приобрели, когда изучали распределение газа в атмосфере. Мы считаем газ идеальным; мы предполагали это, пренебрегая взаимным притяжением атомов при расчете потенциальной энергии. В наш первый пример мы включили лишь потенциальную энергию силы тяжести. Если бы между атомами существовали взаимные силы, то нам, конечно, пришлось бы написать что-нибудь более сложное. Но мы по-прежнему будем предполагать, что между атомами никаких сил нет, и на момент даже забудем о столкновениях; потом мы попытаемся найти этому оправдание. Мы видим, что на высоте h находится гораздо меньше молекул, чем на высоте 0 (фиг. 40.4); согласно формуле (40.1), число их экспоненциально убывает с высотой.

Фиг. 40.4. Высоты h достигают только те молекулы, скорость которых на высоте h=0 достаточно велика.
Но почему же на большей высоте меньше молекул? Разве не все молекулы, живущие на высоте 0, появляются на высоте h? Нет! Потому что на высоте 0 есть молекулы, движущиеся слишком медленно, и они не способны взобраться на потенциальную гору до высоты h . Вот и ключ к решению задачи о распределении молекул по скоростям; ведь, зная равенство (40.1), мы знаем число молекул, скорость которых слишком мала для достижения высоты h . Их ровно столько, чтобы создать нужное падение плотности при увеличении h .
Давайте сформулируем все поточнее: подсчитаем, сколько молекул проходит снизу вверх через плоскость h=0 (называя заданный уровень нулевой высотой, мы вовсе не считаем, что здесь пол, просто это удобнее нам для начала отсчета, и на отрицательной высоте может находиться газ). Эти молекулы газа движутся во всех направлениях, и некоторые из них проходят через нашу плоскость; таким образом, в любой момент сквозь плоскость снизу вверх проходит известное число молекул в секунду с заданной скоростью. Затем отметим следующее: если через u обозначить скорость, необходимую для того, чтобы подняться на высоту h (кинетическая энергия mu 2/2= mgh ), то число молекул в секунду, поднимающихся с нижней плоскости строго вверх и имеющих составляющую скорости, большую чем u, в точности равно числу молекул, пересекающих верхнюю плоскость с любой вертикальной составляющей скорости. Те молекулы, вертикальная скорость которых не превышает u , не достигают верхней плоскости. Таким образом,
Читать дальше