Александр Львовский - Отличная квантовая механика

Здесь есть возможность читать онлайн «Александр Львовский - Отличная квантовая механика» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2019, ISBN: 2019, Издательство: Альпина нон-фикшн, Жанр: Физика, sci_popular, sci_textbook, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Отличная квантовая механика: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Отличная квантовая механика»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Наряду с традиционным материалом, охватываемым курсом квантовой механики (состояния, операторы, уравнение Шрёдингера, атом водорода), в книге предлагается глубинное обсуждение таких концепций, как гильбертово пространство, квантовое измерение, запутанность и декогеренция. Эти концепции имеют решающее значение для понимания квантовой физики и ее связи с макроскопическим миром, но редко рассматриваются в учебниках начального уровня.
В книге применяется математически простая физическая система — поляризация фотонов — в качестве инструмента визуализации, что позволяет студенту увидеть запутанную красоту квантового мира с самых первых страниц. Формальные концепции квантовой физики проиллюстрированы примерами из современных экспериментальных исследований, таких как квантовые компьютеры, коммуникации, телепортация и нелокальность.
Материал книги успешно использовался в качестве основного учебного пособия в двухсеместровом курсе по квантовой механике для студентов-физиков. Однако потенциальный круг читателей много шире и охватывает как студентов и аспирантов, изучающих точные науки, так и всех интересующихся квантовой физикой и квантовыми технологиями. Математический аппарат, требующийся для понимания книги, не выходит за пределы курса технического вуза или математической школы.
Автор — профессор Оксфордского университета, экспериментатор с мировым именем в области квантовой оптики и квантовой информатики — применяет сократовскую педагогику: студенту предлагается самостоятельно разработать аппарат квантовой физики путем последовательного решения тщательно составленных задач. Подробные решения представлены во втором томе пособия.

Отличная квантовая механика — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Отличная квантовая механика», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

95

Иногда мы будем пользоваться альтернативной системой записи, имеющей такой вид: 96 Символ ЛевиЧивиты известный также как антисимметричный единичный тензор - фото 3046

96

Символ Леви-Чивиты, известный также как антисимметричный единичный тензор третьего ранга, определяется следующим образом:

Для любых j, k, l значение εjkl меняет знак, как только любые два индекса меняются местами. Следовательно, всякий раз, когда любые два индекса равны, εjkl = 0.

ε 123≡ εxyz = 1.

В явном виде:

ε xyz = 1,ε xzy = −1,ε zxy = 1,ε zyx = −1,ε yzx = 1,ε yxz = −1, (4.18)

все остальные εjkl = 0.

97

Как говорилось в разд. 3.3.1 (см. также разд. A.2), символ «≃» означает, что уравнение (4.20) применимо к волновым функциям исключительно в координатном базисе. В полном виде уравнение (4.20) выглядело бы так:

и т д 98 Это независимо от того факта что собственные состояния вырождены - фото 3047

и т. д.

98

Это независимо от того факта, что собственные состояния картинка 3048вырождены даже в 𝕐, как мы увидим в следующем разделе.

99

Этот подход — частный случай метода разделения переменных для решения дифференциальных уравнений в частных производных.

100

С тем же успехом мы могли бы выбрать Отличная квантовая механика - изображение 3049Несколько примеров такого рода мы увидим позже в этом разделе.

101

Обозначение |λμ⟩ может ошибочно навести на мысль, что данное состояние представляет собой тензорное произведение. Конечно, это не так: |λμ⟩ есть элемент единственного гильбертова пространства 𝕐.

102

Иногда орбитальное квантовое число l называют просто «момент импульса». Этот термин используется в профессиональном жаргоне, чтобы подчеркнуть, что значение ℏ l есть квантовый эквивалент классического абсолютного значения вектора момента импульса.

103

Стандартное определение сферических гармоник использует связанные полиномы Лежандра. Однако в нашем определении, позаимствованном из книги R. Shankar. Principles of quantum mechanics (Kluwer, 1990), эти полиномы не задействованы, поэтому оно менее громоздко. Этот вид определения соответствует договоренности, которая чаще всего используется в квантовой механике.

104

Множитель (–1)l в уравнение (4.40) добавляется по соглашению.

105

В применении к спину вместо l обычно используется символ s. Символ l зарезервирован для обозначения орбитального момента импульса.

106

Энергии отрицательны, как и ожидалось для связанных состояний.

107

E. Rutherford, The Scattering of α and β Particles by Matter and the Structure of the Atom , Philosophical Magazine 21, 669 (1911).

108

N. Bohr, On the Constitution of Atoms and Molecules , Philosophical Magazine 26, 1–24 and 476–502 (1913).

109

Первоначальная формулировка Менделеева гласила, что периодическая зависимость наблюдается от атомного веса элемента, поскольку в то время атомное ядро еще не было открыто.

110

Магнитное же квантовое число m не влияет на энергию даже в многоэлектронных атомах.

111

Мы используем символ картинка 3050а не картинка 3051чтобы подчеркнуть, что подпространство l = 2 может соответствовать только спиновой степени свободы.

112

Изоморфизм 𝑓(⋅) между линейными пространствами 𝕍 и 𝕎 есть взаимно однозначное отображение | a ⟩ ∈ 𝕍 ↦ 𝑓(| a ⟩) ∈ 𝕎, такое что для любых | a ⟩, | b ⟩ ∈ 𝕍 и числа λ

𝑓(| a ⟩ + | b ⟩) = 𝑓(| a ⟩) + 𝑓(| b ⟩); (4.63)

𝑓(λ| a ⟩) = λ𝑓(| a ⟩).

Обратите внимание на разницу между изоморфизмом и линейным оператором (определение A.15). Линейный оператор есть отображение в пределах единого линейного пространства, тогда как изоморфизм может связывать два разных линейных пространства. Кроме того, линейный оператор не обязан быть взаимно однозначным отображением.

113

Определение гиромагнитного отношения см. в Отступлении 4.4.

114

W. Gerlach and O. Stern, Der experimentelle Nachweis der Richtungsquantelung im Magnetfeld, Zeitschrift für Physik 9, 349–352 (1922); W. Gerlach and O. Stern, Das magnetische Moment des Silberatoms, Zeitschrift für Physik 9, 353–355 (1922); W. Gerlach and O. Stern, Der experimentelle Nachweis des magnetischen Moments des Silberatoms, Zeitschrift für Physik 8, 110–111 (1922).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Отличная квантовая механика»

Представляем Вашему вниманию похожие книги на «Отличная квантовая механика» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Отличная квантовая механика»

Обсуждение, отзывы о книге «Отличная квантовая механика» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x