Александр Львовский - Отличная квантовая механика

Здесь есть возможность читать онлайн «Александр Львовский - Отличная квантовая механика» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2019, ISBN: 2019, Издательство: Альпина нон-фикшн, Жанр: Физика, sci_popular, sci_textbook, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Отличная квантовая механика: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Отличная квантовая механика»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Наряду с традиционным материалом, охватываемым курсом квантовой механики (состояния, операторы, уравнение Шрёдингера, атом водорода), в книге предлагается глубинное обсуждение таких концепций, как гильбертово пространство, квантовое измерение, запутанность и декогеренция. Эти концепции имеют решающее значение для понимания квантовой физики и ее связи с макроскопическим миром, но редко рассматриваются в учебниках начального уровня.
В книге применяется математически простая физическая система — поляризация фотонов — в качестве инструмента визуализации, что позволяет студенту увидеть запутанную красоту квантового мира с самых первых страниц. Формальные концепции квантовой физики проиллюстрированы примерами из современных экспериментальных исследований, таких как квантовые компьютеры, коммуникации, телепортация и нелокальность.
Материал книги успешно использовался в качестве основного учебного пособия в двухсеместровом курсе по квантовой механике для студентов-физиков. Однако потенциальный круг читателей много шире и охватывает как студентов и аспирантов, изучающих точные науки, так и всех интересующихся квантовой физикой и квантовыми технологиями. Математический аппарат, требующийся для понимания книги, не выходит за пределы курса технического вуза или математической школы.
Автор — профессор Оксфордского университета, экспериментатор с мировым именем в области квантовой оптики и квантовой информатики — применяет сократовскую педагогику: студенту предлагается самостоятельно разработать аппарат квантовой физики путем последовательного решения тщательно составленных задач. Подробные решения представлены во втором томе пособия.

Отличная квантовая механика — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Отличная квантовая механика», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

34

О функциях операторов см. разд. A.11.

35

В данном случае общая фаза в правой части уравнения (1.35) имеет значение. Дело в том, что нас интересует не только преобразование самого состояния |+⟩, но и вся линейная операция, определенная этим преобразованием. Чтобы увидеть действие этой общей фазы, вы можете попытаться решить часть a), заменив (1.35) на |+⟩ → |+⟩.

36

Это, конечно, фигура речи. Фотоны движутся со скоростью света, и никто не может «иметь» их на протяжении сколько-нибудь продолжительного периода времени. Утверждения о том, что у Алисы и Боба «имеется» фотон, относятся, как правило, к моменту времени непосредственно перед измерением.

37

Три эквивалентные части соотношения (2.1) представляют собой альтернативные варианты записи для состояний, представляющих собой тензорные произведения; мы будем считать эти варианты взаимозаменяемыми и использовать попеременно. Обратите внимание: индекс A (Алиса) или B (Боб), отмечающий принадлежность гильбертова пространства, помещается снаружи от кет-скобки. Если эти индексы опущены, то считается, что первый компонент тензорного произведения всегда относится к Алисе, а второй — к Бобу.

38

В первый раз эта схема была предложена и реализована в: P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, Ultrabright source of polarization-entangled photons , Physical Review A 60, R773 (R) (1999).

39

Как правило, мы будем использовать интуитивно понятные двухиндексные обозначения для матриц состояний и операторов в составных гильбертовых пространствах. То есть каждый элемент |𝑣i⟩ ⊗ |ωj⟩ базиса тензорного произведения идентифицируется парой индексов ( i, j ), как в (2.8). Это означает, в частности, что матрица оператора имеет четыре, а не два, индекса.

40

W. Wootters, W. Zurek, A Single Quantum Cannot be Cloned, Nature 299, 802 (1982); D. Dieks, Communication by EPR devices, Physics Letters A 92, 271 (1982).

41

Порядок символов внутри бра-вектора такой же, как и внутри кет-вектора: первый символ относится к Алисе, второй — к Бобу. Индексы A и B, указывающие на конкретные гильбертовы пространства, если они есть, обычно помещаются слева от бра-векторов.

42

Напоминание: кубит есть любое двумерное гильбертово пространство. Примером кубита может служить поляризация фотона.

43

Возможно, кому-то захочется ответить, что когда фотон Алисы пропадает из состояния, к примеру, Отличная квантовая механика - изображение 3041то фотон Боба приобретает состояние Отличная квантовая механика - изображение 3042Это, разумеется, неверно. Чтобы убедиться в этом, вспомните упр. 2.9, где мы выяснили, что |Ψ —⟩ можно также записать, как (|+ —⟩ — |— +⟩)/2. Это означает, что фотон Боба с равной вероятностью может находиться в состояниях |+⟩ и |—⟩.

44

Тот факт, что ансамбли Боба, полученные для двух измерительных базисов Алисы, идентичны, мы покажем строго в упр. 5.40.

45

A. Einstein, B. Podolsky, N. Rosen, Can Quantum-Mechanical Description of Physical Reality be Considered Complete? Physical Review 47, 777 (1935).

46

D. Bohm, Quantum Theory, Prentice-Hall, Englewood Cliffs, 1951.

47

Фок В. А., Эйнштейн А., Подольский Б. и др. Можно ли считать, что квантово-механическое описание физической реальности является полным? // Успехи физических наук. Т. XVI. Вып. 4 (1936). С. 440. — Прим. ред.

48

Там же. С. 446. — Прим. ред.

49

J. S. Bell, On the Einstein — Poldolsky — Rosen paradox, Physics 1, 195 (1964).

50

S. J. Freedman and J. F. Clauser, Experimental test of local hidden-variable theories , Physical Review Letters 28, 938 (1972).

51

A. Aspect, P. Grangier, G. Roger, Experimental Realization of Einstein — Podolsky — Rosen — Bohm Gedankenexperiment: A New Violation of Bell’s Inequalities , Physical Review Letters 49, 91 (1982).

52

G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, A. Zeilinger, Violation of Bell’s inequality under strict Einstein locality conditions , Physical Review Letters 81, 5039 (1998).

53

M. A. Rowe, D. Kielpinski, V. Meyer, C. A. Sackett, W. M. Itano, C. Monroe, D. J. Wineland, Experimental violation of a Bell’s inequality with efficient detection , Nature 409, 791 (2001).

54

B. Hensen et al ., Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres , Nature 526, 682 (2015).

55

M. Guistina et al. Significant-loophole-free test of Bell’s theorem with entangled photons , Physical Review Letters 115, 250401 (2015).

56

L. K. Shalm et al. A strong loophole-free test of local realism , Physical Review Letters 115, 250402 (2015).

57

Конечно, можно настроить электронику таким образом, что при отсутствии сигнала в обоих детекторах экран случайным образом покажет величину ±1. При такой программе эксперимент будет соответствовать рис. 2.2, но проблему это не решит (см. упр. 2.52).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Отличная квантовая механика»

Представляем Вашему вниманию похожие книги на «Отличная квантовая механика» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Отличная квантовая механика»

Обсуждение, отзывы о книге «Отличная квантовая механика» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x