Julian Barbour - The End of Time - The Next Revolution in Physics

Здесь есть возможность читать онлайн «Julian Barbour - The End of Time - The Next Revolution in Physics» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2001, Издательство: Oxford University Press, Жанр: Физика, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

The End of Time: The Next Revolution in Physics: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «The End of Time: The Next Revolution in Physics»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Two views of the world clashed at the dawn of thought. In the great debate between the earliest Greek philosophers, Heraclitus argued for perpetual change, but Parmenides maintained there was neither time nor motion. Over the ages, few thinkers have taken Parmenides seriously, but I shall argue that Heraclitan flux, depicted nowhere more dramatically than in Turner’s painting below, may well be nothing but a well-founded illusion. I shall take you to a prospect of the end of time. In fact, you see it in Turner’s painting, which is static and has not changed since he painted it. It is an illusion of flux. Modern physics is beginning to suggest that all the motions of the whole universe are a similar illusion – that in this respect Nature is an even more consummate artist than Turner. This is the story of my book.
Richard Feynman once quipped that "Time is what happens when nothing else does." But Julian Barbour disagrees: if nothing happened, if nothing changed, then time would stop. For time is nothing but change. It is change that we perceive occurring all around us, not time. Put simply, time does not exist. In this highly provocative volume, Barbour presents the basic evidence for a timeless universe, and shows why we still experience the world as intensely temporal. It is a book that strikes at the heart of modern physics. It casts doubt on Einstein's greatest contribution, the spacetime continuum, but also points to the solution of one of the great paradoxes of modern science, the chasm between classical and quantum physics. Indeed, Barbour argues that the holy grail of physicists--the unification of Einstein's general relativity with quantum mechanics--may well spell the end of time. Barbour writes with remarkable clarity as he ranges from the ancient philosophers Heraclitus and Parmenides, through the giants of science Galileo, Newton, and Einstein, to the work of the contemporary physicists John Wheeler, Roger Penrose, and Steven Hawking. Along the way he treats us to enticing glimpses of some of the mysteries of the universe, and presents intriguing ideas about multiple worlds, time travel, immortality, and, above all, the illusion of motion. The End of Time is a vibrantly written and revolutionary book. It turns our understanding of reality inside-out.

The End of Time: The Next Revolution in Physics — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «The End of Time: The Next Revolution in Physics», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

The most important thing about Schrödinger’s wave mechanics is that it is formulated not in space and time, but in a suitably chosen Q and time. This is not apparent for a single particle, for which the configuration space is ordinary space. Since most accounts of quantum mechanics consider only the behaviour of a single particle, many people are unaware that the wave function is defined on configuration space. That is where ψ lives. It makes a huge difference.

An illustration using a plastic ball-and-strut model of molecules may help to bring this home. Imagine that you are holding such a model in some definite position in a room, which can represent absolute space. There are three digital displays – I shall call them ψ meters – that show red, green and blue numbers on the wall. These numbers give the intensities of the three ‘mists’ represented by ψ for the system at the time considered. Suppose you take just one ball, representing one particle of the system, and detach it from the model. Keeping all the other balls fixed, you can move the one ball around and, courtesy of the ψ meters, see how ψ changes. As you move in each direction in space, each ψ value will change. For each point of space you can find the value of ψ. The blue ψ meter will always tell you the positions for which the probability is high or low. Suppose you do this and then return the ball to its original place.

Now move a second ball to a slightly different position, and leave it there. The ψ meters will change to new values. Once again, explore space with the first ball, watching the ψ meters. The values of ψ will be (in general) quite different. The ψ values on the displays embody information. The amount is staggering. For every single position in space to which you move any one of the other balls, you get a complete new set of values in space for the ball chosen as the ‘explorer’. And any ball can be the explorer. Each explorer will have its own distinctive three-dimensional patterns of ψ for every conceivable set of positions of the others.

Now, what is a molecule? When Richard Dawkins described the haemoglobin molecule and its six thousand million million million perfect copies in our body, he said that in its intricate thornbush structure there is ‘not a twig nor a twist out of place’. That is in a molecule containing perhaps twenty thousand atoms. But molecules are even more remarkable than that. The twig and the twist are averaged structures corresponding to the most probable configuration in which the molecule will be found. In the Schrödinger picture, the molecule is not just one structure but a huge collection of potentially present structures, each with its own probability.

In fact, the complete structure of complicated protein molecules like haemoglobin cannot be understood solely on the basis of wave mechanics. This is because of the way they are put together from amino acid units. But for simpler molecules, which may still contain many particles, you could (in imagination at least) do what I have just described for the ball-and-strut model. Start with one of the model configurations shown in chemistry textbooks, and look at the ψ meters, especially the blue one. It will give a high reading. Around that highly probable structure are other similar structures, all with a high – but not quite so high – blue intensity. Individual units of the structure – simpler forms of Dawkins’s ‘twigs’ – could be moved as a whole, say by twisting them, from the most probable configuration, and the blue intensity would drop. It would also drop if one atom of the few dozen within the twig were moved from the most-favoured position. The molecule is not just the most probable configuration. It is all possible configurations with their ψ values, held in balance by the laws of wave mechanics. The existence and most-favoured shape of molecules can be understood in no other way.

Contrary to the impression given in many books, quantum mechanics is not about particles in space: it is about systems being in configurations – at ‘points’ in a Q, or ‘hybrid Platonia’. That is something quite different from individual probabilities for individual particles being at different points of ordinary space. Each ‘point’ is a whole configuration – a ‘universe’. The arena formed by the ‘points’ is unimaginably large. And classical physics puts the system at just one point in the arena. The wave function, in contrast, is in principle everywhere.

This is what I mean by saying that Schrödinger opened the door onto a vast new arena. Compared with Schrödinger’s vistas, grander than any Wagnerian entrance into Valhalla, the Heisenberg uncertainty relation for a single particle captures little of quantum mechanics. All revolutions in physics pale into insignificance beside Schrödinger’s step into the configuration space Q. Not that he did it happily.

CORRELATIONS AND ENTANGLEMENT

It is not possible to observe the extraordinary quantum arena directly. Some people do not believe it exists at all. To a large degree it has been deduced, or surmised, from phenomena observed in systems of a few particles. Getting clear, direct evidence for the quantum behaviour of single particles was difficult. It was long after Dirac made his memorable remark about each photon interfering with itself that the development of sources which release individual particles with long time intervals between releases confirmed the build-up of interference patterns in individual ‘hits’. In the last two decades, it has become possible to create in the laboratory pure quantum states of two particles, whose Q therefore has six dimensions. The quantum predictions, all verified, are not easy to explain in many words, let alone a few, and a serious attempt to do so would take me too far from my main story. The simplest possible illustration is given by two particles moving on a single line; each has a one-dimensional Q and together they have a two-dimensional configuration space (Figure 39).

As for a single particle, the maximally informative description of a quantum system at any instant t is specified by a complex wave function ψ which, in principle, has a different value at each point of the configuration space. As t changes, ψ changes. All information that can be known about the system at t is encoded in ψ at f, and consists of predictions that can be made about it. Many different kinds of prediction can be made, but they are often mutually exclusive. In a very essential way, the predictions refer to the system, not its parts.

Let us start with position predictions. Just as we did for a single particle, we can form from ψ the sum of the squares of its intensities, finding the intensity of the ‘blue mist’ (Figure 40). This gives the relative probability that the system will be found at the corresponding point in Q if an appropriate measurement is made. The important thing is that a single point in Q corresponds to positions of both particles. Anyone who has not understood this has not understood quantum mechanics. It is this fact, coupled with complementarity, that leads to the most startling quantum phenomena.

Figure 39The twodimensional configuration space Q of two particles on one - фото 41

Figure 39.The two-dimensional configuration space Q of two particles on one line. The line is shown in multiple copies on the left. Nine different configurations of the two particles on it are shown. The positions of particles 1 and 2 are indicated by the black and white triangles, respectively. The axes of Q on the right show the distances of particle 1 (horizontal axis) and particle 2 (vertical axis) from the left-hand end of the line. The points on the 45° diagonal in Q correspond to configurations for which the two particles coincide (points 1, 4 and 8). You might like to check how the nine configurations on the left are represented by the nine corresponding points on the right.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «The End of Time: The Next Revolution in Physics»

Представляем Вашему вниманию похожие книги на «The End of Time: The Next Revolution in Physics» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «The End of Time: The Next Revolution in Physics»

Обсуждение, отзывы о книге «The End of Time: The Next Revolution in Physics» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x