4.4. Одномерная система распределения капитала
4.4.1. Факторы, влияющие на распределение капитала по различным показателям
В этом разделе мы будем исследовать влияние различных факторов на распределение капитала с помощью различных показателей. Если в предыдущих разделах мы просто продемонстрировали технику формирования портфеля в заданный момент времени из ограниченного и заранее определенного количества комбинаций, то теперь мы рассмотрим функционирование полноценной торговой стратегии на длительном временном интервале.
Процесс формирования портфеля будем моделировать по исторической базе цен акций и их опционов за период 2002–2010 гг. В качестве базовых активов для построения опционных комбинаций будем использовать акции из списка S&P 500. Будем использовать дневные цены закрытия на акции и соответствующие им последние котировки спроса и предложения опционов (в качестве текущей цены опциона принимается середина спреда).
Обозначим через S = {s 1, s 2…, s m} множество всех рассматриваемых акций. Двигаясь по истории из прошлого в будущее, будем каждый день T строить для каждой акции s i из S множество опционных комбинаций по следующим правилам. Определим три ближайшие даты экспирации опционов. Для каждой даты экспирации, отстоящей от T на определенное количество торговых дней в будущее, возьмем множество всех опционов пут и колл на акцию s i , имеющих страйки, удаленные от текущей цены акции не более чем на 10 %. Материалом для формирования портфеля будет множество коротких комбинаций типа стрэддл и стрэнгл, построенных с соблюдением следующих условий. При построении стрэнглов допускаются только те варианты, для которых страйк пута меньше страйка колла. Стрэддлы и стрэнглы состоят из равного числа опционов пут и колл.
В результате для каждого дня прошлого и каждой из трех ближайших экспираций получается широкий набор опционных комбинаций. Для каждой из них подсчитаем значение математического ожидания прибыли по логнормальному распределению. Выберем те комбинации, у которых значение этого критерия больше 1 % от объема инвестиций. Будем строить портфель из элементов этого множества путем распределения $100 000 (объем средств, выделенных на первом этапе процесса управления капиталом). Капитал будем распределять по одному из семи показателей, описанных в предыдущих разделах:
1) эквивалент позиции в акциях;
2) обратно пропорционально премии;
3) математическое ожидание прибыли на основе логнормального распределения;
4) вероятность получения прибыли на основе логнормального распределения;
5) дельта;
6) асимметрия;
7) VaR.
На дату экспирации будем фиксировать прибыль или убыток каждого портфеля.
Сравнительный анализ этих показателей будет фокусироваться на следующем вопросе: насколько портфели, сформированные с помощью различных показателей, отличаются друг от друга с точки зрения их доходности. Другими словами, в какой степени доходность портфеля зависит от показателя, с помощью которого распределялся капитал между элементами портфеля.
В предыдущем разделе для того, чтобы выразить степень различия портфелей с точки зрения их внутренней структуры, мы использовали коэффициент вариации весов отдельных элементов портфеля. Поскольку вес портфеля всегда положителен, c применением коэффициента вариации не возникает проблем. Однако в этом разделе мы будем сравнивать различные методы распределения капитала на основе реализовавшейся прибыли портфеля, которая может быть отрицательной (убыток). Поскольку в данном случае коэффициент вариации – вычисляемый как отношение стандартного отклонения (всегда положительно) к среднему (положительно или отрицательно) – может оказаться отрицательной величиной, его применение для оценки изменчивости (степени различия портфелей) невозможно. Поэтому нам придется выражать изменчивость с помощью стандартного отклонения, не нормированного на величину среднего.
Чем чреват такой отказ от нормировки? Из практики известно, что во многих случаях стандартное отклонение имеет положительную корреляцию со средним. В таких случаях тренды, наблюдаемые в динамике изменчивости (или другие зависимости), могут по существу быть трендами среднего, а не изменчивости. Нормировка же позволяет устранить этот недостаток. Поэтому, прежде чем приступить к нашим исследованиям (в которых мы вынуждены отказаться от нормировки), необходимо установить, существует ли в нашем случае взаимозависимость между средним и стандартным отклонением. Использование ненормированного стандартного отклонения будет допустимо только в том случае, если такой зависимости не существует.
Читать дальше
Конец ознакомительного отрывка
Купить книгу