• Пожаловаться

John Long: Darwin’s Devices

Здесь есть возможность читать онлайн «John Long: Darwin’s Devices» весь текст электронной книги совершенно бесплатно (целиком полную версию). В некоторых случаях присутствует краткое содержание. категория: Биология / на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале. Библиотека «Либ Кат» — LibCat.ru создана для любителей полистать хорошую книжку и предлагает широкий выбор жанров:

любовные романы фантастика и фэнтези приключения детективы и триллеры эротика документальные научные юмористические анекдоты о бизнесе проза детские сказки о религиии новинки православные старинные про компьютеры программирование на английском домоводство поэзия

Выбрав категорию по душе Вы сможете найти действительно стоящие книги и насладиться погружением в мир воображения, прочувствовать переживания героев или узнать для себя что-то новое, совершить внутреннее открытие. Подробная информация для ознакомления по текущему запросу представлена ниже:

John Long Darwin’s Devices

Darwin’s Devices: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Darwin’s Devices»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

The challenge of studying evolution is that the history of life is buried in the past—we can’t witness the dramatic events that shaped the adaptations we see today. But biorobotics expert John Long has found an ingenious way to overcome this problem: he creates robots that look and behave like extinct animals, subjects them to evolutionary pressures, lets them compete for mates and resources, and mutates their ‘genes’. In short, he lets robots play the game of life. In Darwin’s Devices, Long tells the story of these evolving biorobots—how they came to be, and what they can teach us about the biology of living and extinct species. Evolving biorobots can replicate creatures that disappeared from the earth long ago, showing us in real time what happens in the face of unexpected environmental challenges. Biomechanically correct models of backbones functioning as part of an autonomous robot, for example, can help us understand why the first vertebrates evolved them. But the most impressive feature of these robots, as Long shows, is their ability to illustrate the power of evolution to solve difficult technological challenges autonomously—without human input regarding what a workable solution might be. Even a simple robot can create complex behavior, often learning or evolving greater intelligence than humans could possibly program. This remarkable idea could forever alter the face of engineering, design, and even warfare. An amazing tour through the workings of a fertile mind, Darwin’s Devices will make you rethink everything you thought you knew about evolution, robot intelligence, and life itself.

John Long: другие книги автора


Кто написал Darwin’s Devices? Узнайте фамилию, как зовут автора книги и список всех его произведений по сериям.

Darwin’s Devices — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Darwin’s Devices», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать

In the end, with all of this wonderful confusion surrounding the identity of the mother of all vertebrates, the specific vertebrate we chose as our target for designing Evolvabots was the tadpole larva of living tunicates. What finally sold us was that Matt McHenry, working at the time as a PhD student in the laboratory of Professor Mimi Koehl, University of California, Berkeley, had figured out the neural circuitry involved in the swimming behavior of tunicate larvae.

Using careful experiments in which he altered the direction that light hit swimming larvae in a tank, McHenry showed that the tadpole larvae were using a very simple mechanism to orient toward and then away from the light, in a behavior known as positive and negative phototaxis, respectively (see Figure 3.2). The mechanism is called helical klinotaxis (HK) and refers to the fact that many small swimming animals move in helical pathways, as if along the threads of a screw, as they move toward or away from something in their environment, like light or the chemical plume of a food source. Although spiraling along in a helix may seem inefficient (why not just swim in a straight line?), Hugh Crenshaw, working before McHenry in the laboratory of Steven Vogel at Duke University, had shown that it was actually efficient in terms of control. To control your directions in three dimensions, all you, as a small swimmer, need to do is change two variables: your translational (straight) and rotational velocity.

When I saw McHenry present his work on tunicate tadpole larvae at a scientific meeting, I remember nearly shouting out, “Let’s build a tadpole robot!” His mathematical model, which he had worked on with Jim Strother, gave us what we needed to know about the likely neural control of HK in a chordate. Fortunately for us, McHenry and Strother agreed to help transfer their knowledge of HK and tadpole larvae into a robotic form.

DESIGN QUESTION 2: WHICH FEATURES OF THE ANIMAL WILL THE EVOLVABOTS POSSESS AND WHY?

“Keep it simple, stupid.” This quote, allegedly from pioneering aerospace engineer Kelly Johnson, is known throughout the design community as the KISS principle. The KISS principle is important at this stage in the design because in the heat of jubilant complexification, it helps keep your feet on the ground and your eyes on the target. KISS forces you to rephrase design question 2: what is the least we can do to fulfill our overall design goal?

For scientists, doing the simplest thing first has a very important philosophical basis: adding complexity to your model requires a combinatorial explosion of decisions, and each decision has an impact on the outcome of your design. And even more importantly, connecting back from your results to the causal elements in your design requires that you understand every element in your design and how every element interacts with all of the other elements. The simpler your design—the more KISS inspired that it is—the better your chances of understanding what the heck you’ve created. This KISS-first approach is one of the guiding principles at Vassar College when we work with students in the Interdisciplinary Robotics Research Laboratory. Undergraduates Adam Lammert and Joseph Schumacher, both cognitive science majors at Vassar, applied the KISS principle when they built the robots that we talk about in this chapter.

Embracing the KISS principle, we decided to keep our wish list of features short: (1) behavior: helical klinotaxis; (2) sensor: single eyespot; (3) brain: simple processor that turns the light intensity signal from the eyespot into a turning command for the motor; (4) motor: one, used for both driving and turning the tail; (5) body: a simple round bowl; (6) tail: a notochord with a flared caudal fin. Although this list may seem like a long one, keep in mind that some features are as simple as you can get (e.g., single eyespot, bowl for a body) and some features are simply missing (e.g., muscles, other sensors, a mouth).

The design of the first Tadro started in 2003 with Adam, a Vassar undergraduate and cognitive science major. He was interested in robotics, and we talked about taking McHenry and Strother’s neuromuscular model for tunicate tadpole larvae and making a simple robot, relying on an insight from Chuck Pell.

Chuck had been working on three-dimensional helical klinotaxis with Hugh, of Duke University. Hugh, a biomechanist trained for his PhD by Steven Vogel, had made a true breakthrough by figuring out how to measure and mathematically describe the 3-D motion of the single-celled organisms that swim almost exclusively using HK. Later Hugh, as a faculty member at Duke, and Chuck, working with Professor Steve Wainwright out of Duke’s BioDesign Studio, created the first autonomous robot that used an HK algorithm, a small torpedo-shaped vessel. Capable of navigation with a only a single propeller for control and orientation, the robot would become known as Microhunter. For our purposes, Chuck’s insight was that the three-dimensional HK used by the tunicate tadpoles would also work in two dimensions. This meant that we could stay on the surface of the water, avoiding the engineering complexities of moving in three dimensions while keeping our electronics dry. KISS in action.

For all of this work, Tadro1 was not yet an Evolvabot. [19] You can read about Tadro1 in J. H. Long Jr., C. Lammert, C. A. Pell, M. Kemp, J. Strother, H. C. Crenshaw, and M. J. McHenry, “A Navigational Primitive: Biorobotic Implementation of Cycloptic Helical Klinotaxis in Planar Motion,” IEEE Journal of Oceanic Engineering 29, no. 3 (2004): 795–806. The transformation from biorobot to Evolvabot was driven by the interests of another cognitive science major at Vassar, Joe Schumacher, who helped endow Tadro1 with a backbone so that we could begin studying backbone biomechanics using robots.

Rob Root, Chun Wai Liew, Tom Koob, and I had tried to fund our research on the biomechanics of backbones straight-up, with no robots. We had seen two of our proposals to the National Science Foundation (NSF) rejected. The third time was a charm, and the change that made the difference—adding robots—came about almost by accident. In the fall of 2003 I worked on a review panel at NSF down in Arlington, Virginia—it was the same panel that had twice rejected our grant. The real power in the room was the program officer, who had the final say about which projects were funded. When a chorus of positivity would arise from the panelists, she’d put down her pen and start asking tough questions. When a break came in the day’s work, I got a chance to ask her a question. Having previously reminded her of my two failed proposals, I went over and, without any preamble, blurted, “What about robots?” She looked up, paused without giving me eye contact, then, looking at me directly, said, “Robots would be good.” That was all I needed to know.

Back at Vassar, Joe and I started scheming. Tadro1 didn’t have a biomimetic notochord yet, but Adam, Tadro1’s departing creator, helped Joe create Tadro2 by giving Tadro1 two important upgrades: (1) a computerized brain (replacing Tadro1’s analog circuitry) and (2) a genetic algorithm that coded for the size of a flapping tail made out of duct tape. Joined in the summer of 2004 by Nick Livingston, Joe quickly created a water world, programmed the digital brain, and set out to design a biomimetic notochord and vertebral column. For the electronics and the new Tadro body, he enlisted help from John Vanderlee and Carl Bertsche, Vassar’s electronics technician and machinist.

By the time our NSF funding started in January of 2005, Joe was already replacing Tadro2’s duct-tape tail with one that had a simple rod serving as a notochord. He used ten-centimeter-long cylindrical erasers as the notochord, plastic clamps as vertebrae, and then put a flared caudal fin on the end. Together we designed the genetic algorithm that would code for the evolvable traits: the length of the axial skeleton and the number of vertebrae. Nick made an important innovation: he wrote a program that allowed Tadro2 to make its tail adjustments for maneuvering using the same motor that flapped the tail. This architecture further reduced the complexity of Tadro2 and made it much more reliable. With our incoming students, whom we called “Fish Fellows,” we quickly realized that notochords made of erasers weren’t making sense because we couldn’t change the stiffness of the erasers’ material. The solution—building the notochord out of a biomaterial whose stiffness we could vary—would come from Tom Koob, as we’ll see on the next pages. With the change to the brain and the tail of Tadro2, we realized that we really had a new critter: Tadro3 (Figure 3.3).

Читать дальше
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Darwin’s Devices»

Представляем Вашему вниманию похожие книги на «Darwin’s Devices» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё не прочитанные произведения.


Charles Sheffield: The Amazing Dr. Darwin
The Amazing Dr. Darwin
Charles Sheffield
David Gatewood: The Robot Chronicles
The Robot Chronicles
David Gatewood
Barrington Bayley: The Rod of Light
The Rod of Light
Barrington Bayley
C. Cargill: Sea of Rust
Sea of Rust
C. Cargill
libcat.ru: книга без обложки
libcat.ru: книга без обложки
Isaac Asimov
Отзывы о книге «Darwin’s Devices»

Обсуждение, отзывы о книге «Darwin’s Devices» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.