Pedro Domingos - The Master Algorithm - How the Quest for the Ultimate Learning Machine Will Remake Our World

Здесь есть возможность читать онлайн «Pedro Domingos - The Master Algorithm - How the Quest for the Ultimate Learning Machine Will Remake Our World» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Прочая околокомпьтерная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Algorithms increasingly run our lives. They find books, movies, jobs, and dates for us, manage our investments, and discover new drugs. More and more, these algorithms work by learning from the trails of data we leave in our newly digital world. Like curious children, they observe us, imitate, and experiment. And in the world’s top research labs and universities, the race is on to invent the ultimate learning algorithm: one capable of discovering any knowledge from data, and doing anything we want, before we even ask.
Machine learning is the automation of discovery-the scientific method on steroids-that enables intelligent robots and computers to program themselves. No field of science today is more important yet more shrouded in mystery. Pedro Domingos, one of the field’s leading lights, lifts the veil for the first time to give us a peek inside the learning machines that power Google, Amazon, and your smartphone. He charts a course through machine learning’s five major schools of thought, showing how they turn ideas from neuroscience, evolution, psychology, physics, and statistics into algorithms ready to serve you. Step by step, he assembles a blueprint for the future universal learner-the Master Algorithm-and discusses what it means for you, and for the future of business, science, and society.
If data-ism is today’s rising philosophy, this book will be its bible. The quest for universal learning is one of the most significant, fascinating, and revolutionary intellectual developments of all time. A groundbreaking book, The Master Algorithm is the essential guide for anyone and everyone wanting to understand not just how the revolution will happen, but how to be at its forefront.

The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Another candidate Master Algorithm is the microprocessor. After all, the one in your computer can be viewed as a single algorithm whose job is to execute other algorithms, like a universal Turing machine; and it can run any imaginable algorithm, up to its limits of memory and speed. In effect, to a microprocessor an algorithm is just another kind of data. The problem here is that, by itself, the microprocessor doesn’t know how to do anything; it just sits there idle all day. Where do the algorithms it runs come from? If they were coded up by a human programmer, no learning is involved. Nevertheless, there’s a sense in which the microprocessor is a good analog for the Master Algorithm. A microprocessor is not the best hardware for running any particular algorithm. That would be an ASIC (application-specific integrated circuit) designed very precisely for that algorithm. Yet microprocessors are what we use for almost all applications, because their flexibility trumps their relative inefficiency. If we had to build an ASIC for every new application, the Information Revolution would never have happened. Similarly, the Master Algorithm is not the best algorithm for learning any particular piece of knowledge; that would be an algorithm that already encodes most of that knowledge (or all of it, making the data superfluous). The point, however, is to induce the knowledge from data, because it’s easier and costs less; so the more general the learning algorithm, the better.

An even more extreme candidate is the humble NOR gate: a logic switch whose output is 1 only if its inputs are both 0. Recall that all computers are made of logic gates built out of transistors, and all computations can be reduced to combinations of AND, OR, and NOT gates. A NOR gate is just an OR gate followed by a NOT gate: the negation of a disjunction, as in “I’m happy as long as I’m not starving or sick.” AND, OR and NOT can all be implemented using NOR gates, so NOR can do everything, and in fact it’s all some microprocessors use. So why can’t it be the Master Algorithm? It’s certainly unbeatable for simplicity. Unfortunately, a NOR gate is not the Master Algorithm any more than a Lego brick is the universal toy. It can certainly be a universal building block for toys, but a pile of Legos doesn’t spontaneously assemble itself into a toy. The same applies to other simple computation schemes, like Petri nets or cellular automata.

Moving on to more sophisticated alternatives, what about the queries that any good database engine can answer, or the simple algorithms in a statistical package? Aren’t those enough? These are bigger Lego bricks, but they’re still only bricks. A database engine never discovers anything new; it just tells you what it knows. Even if all the humans in a database are mortal, it doesn’t occur to it to generalize mortality to other humans. (Database engineers would blanch at the thought.) Much of statistics is about testing hypotheses, but someone has to formulate them in the first place. Statistical packages can do linear regression and other simple procedures, but these have a very low limit on what they can learn, no matter how much data you feed them. The better packages cross into the gray zone between statistics and machine learning, but there are still many kinds of knowledge they can’t discover.

OK, it’s time to come clean: the Master Algorithm is the equation U(X) = 0. Not only does it fit on a T-shirt; it fits on a postage stamp. Huh? U(X) = 0 just says that some (possibly very complex) function U of some (possibly very complex) variable X is equal to 0. Every equation can be reduced to this form; for example, F = ma is equivalent to Fma = 0, so if you think of Fma as a function U of F , voilà: U(F) = 0. In general, X could be any input and U could be any algorithm, so surely the Master Algorithm can’t be any more general than this; and since we’re looking for the most general algorithm we can find, this must be it. I’m just kidding, of course, but this particular failed candidate points to a real danger in machine learning: coming up with a learner that’s so general, it doesn’t have enough content to be useful.

So what’s the least content a learner can have in order to be useful? How about the laws of physics? After all, everything in the world obeys them (we believe), and they gave rise to evolution and (through it) the brain. Well, perhaps the Master Algorithm is implicit in the laws of physics, but if so, then we need to make it explicit. Just throwing data at the laws of physics won’t result in any new laws. Here’s one way to think about it: perhaps some field’s master theory is just the laws of physics compiled into a more convenient form for that field, but if so then we need an algorithm that finds a shortcut from that field’s data to its theory, and it’s not clear the laws of physics can be of any help with this. Another issue is that, if the laws of physics were different, the Master Algorithm would presumably still be able to discover them in many cases. Mathematicians like to say that God can disobey the laws of physics, but even he cannot defy the laws of logic. This may be so, but the laws of logic are for deduction; what we need is something equivalent, but for induction.

The five tribes of machine learning

Of course, we don’t have to start from scratch in our hunt for the Master Algorithm. We have a few decades of machine learning research to draw on. Some of the smartest people on the planet have devoted their lives to inventing learning algorithms, and some would even claim that they already have a universal learner in hand. We will stand on the shoulders of these giants, but take such claims with a grain of salt. Which raises the question: how will we know when we’ve found the Master Algorithm? When the same learner, with only parameter changes and minimal input aside from the data, can understand video and text as well as humans, and make significant new discoveries in biology, sociology, and other sciences. Clearly, by this standard no learner has yet been demonstrated to be the Master Algorithm, even in the unlikely case one already exists.

Crucially, the Master Algorithm is not required to start from scratch in each new problem. That bar is probably too high for any learner to meet, and it’s certainly very unlike what people do. For example, language does not exist in a vacuum; we couldn’t understand a sentence without our knowledge of the world it refers to. Thus, when learning to read, the Master Algorithm can rely on having previously learned to see, hear, and control a robot. Likewise, a scientist does not just blindly fit models to data; he can bring all his knowledge of the field to bear on the problem. Therefore, when making discoveries in biology, the Master Algorithm can first read all the biology it wants, relying on having previously learned to read. The Master Algorithm is not just a passive consumer of data; it can interact with its environment and actively seek the data it wants, like Adam, the robot scientist, or like any child exploring her world.

Our search for the Master Algorithm is complicated, but also enlivened, by the rival schools of thought that exist within machine learning. The main ones are the symbolists, connectionists, evolutionaries, Bayesians, and analogizers. Each tribe has a set of core beliefs, and a particular problem that it cares most about. It has found a solution to that problem, based on ideas from its allied fields of science, and it has a master algorithm that embodies it.

For symbolists, all intelligence can be reduced to manipulating symbols, in the same way that a mathematician solves equations by replacing expressions by other expressions. Symbolists understand that you can’t learn from scratch: you need some initial knowledge to go with the data. They’ve figured out how to incorporate preexisting knowledge into learning, and how to combine different pieces of knowledge on the fly in order to solve new problems. Their master algorithm is inverse deduction, which figures out what knowledge is missing in order to make a deduction go through, and then makes it as general as possible.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World»

Представляем Вашему вниманию похожие книги на «The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World»

Обсуждение, отзывы о книге «The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x