• Пожаловаться

Pedro Domingos: The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World

Здесь есть возможность читать онлайн «Pedro Domingos: The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World» весь текст электронной книги совершенно бесплатно (целиком полную версию). В некоторых случаях присутствует краткое содержание. категория: Прочая околокомпьтерная литература / на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале. Библиотека «Либ Кат» — LibCat.ru создана для любителей полистать хорошую книжку и предлагает широкий выбор жанров:

любовные романы фантастика и фэнтези приключения детективы и триллеры эротика документальные научные юмористические анекдоты о бизнесе проза детские сказки о религиии новинки православные старинные про компьютеры программирование на английском домоводство поэзия

Выбрав категорию по душе Вы сможете найти действительно стоящие книги и насладиться погружением в мир воображения, прочувствовать переживания героев или узнать для себя что-то новое, совершить внутреннее открытие. Подробная информация для ознакомления по текущему запросу представлена ниже:

Pedro Domingos The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World

The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Algorithms increasingly run our lives. They find books, movies, jobs, and dates for us, manage our investments, and discover new drugs. More and more, these algorithms work by learning from the trails of data we leave in our newly digital world. Like curious children, they observe us, imitate, and experiment. And in the world’s top research labs and universities, the race is on to invent the ultimate learning algorithm: one capable of discovering any knowledge from data, and doing anything we want, before we even ask. Machine learning is the automation of discovery-the scientific method on steroids-that enables intelligent robots and computers to program themselves. No field of science today is more important yet more shrouded in mystery. Pedro Domingos, one of the field’s leading lights, lifts the veil for the first time to give us a peek inside the learning machines that power Google, Amazon, and your smartphone. He charts a course through machine learning’s five major schools of thought, showing how they turn ideas from neuroscience, evolution, psychology, physics, and statistics into algorithms ready to serve you. Step by step, he assembles a blueprint for the future universal learner-the Master Algorithm-and discusses what it means for you, and for the future of business, science, and society. If data-ism is today’s rising philosophy, this book will be its bible. The quest for universal learning is one of the most significant, fascinating, and revolutionary intellectual developments of all time. A groundbreaking book, The Master Algorithm is the essential guide for anyone and everyone wanting to understand not just how the revolution will happen, but how to be at its forefront.

Pedro Domingos: другие книги автора


Кто написал The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World? Узнайте фамилию, как зовут автора книги и список всех его произведений по сериям.

The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать

Another prominent machine-learning skeptic is the linguist Noam Chomsky. Chomsky believes that language must be innate, because the examples of grammatical sentences children hear are not enough to learn a grammar. This only puts the burden of learning language on evolution, however; it does not argue against the Master Algorithm but only against it being something like the brain. Moreover, if a universal grammar exists (as Chomsky believes), elucidating it is a step toward elucidating the Master Algorithm. The only way this is not the case is if language has nothing in common with other cognitive abilities, which is implausible given its evolutionary recency.

In any case, if we formalize Chomsky’s “poverty of the stimulus” argument, we find that it’s demonstrably false. In 1969, J. J. Horning proved that probabilistic context-free grammars can be learned from positive examples only, and stronger results have followed. (Context-free grammars are the linguist’s bread and butter, and the probabilistic version models how likely each rule is to be used.) Besides, language learning doesn’t happen in a vacuum; children get all sorts of cues from their parents and the environment. If we’re able to learn language from a few years’ worth of examples, it’s partly because of the similarity between its structure and the structure of the world. This common structure is what we’re interested in, and we know from Horning and others that it suffices.

More generally, Chomsky is critical of all statistical learning. He has a list of things statistical learners can’t do, but the list is fifty years out of date. Chomsky seems to equate machine learning with behaviorism, where animal behavior is reduced to associating responses with rewards. But machine learning is not behaviorism. Modern learning algorithms can learn rich internal representations, not just pairwise associations between stimuli.

In the end, the proof is in the pudding. Statistical language learners work, and hand-engineered language systems don’t. The first eye-opener came in the 1970s, when DARPA, the Pentagon’s research arm, organized the first large-scale speech recognition project. To everyone’s surprise, a simple sequential learner of the type Chomsky derided handily beat a sophisticated knowledge-based system. Learners like it are now used in just about every speech recognizer, including Siri. Fred Jelinek, head of the speech group at IBM, famously quipped that “every time I fire a linguist, the recognizer’s performance goes up.” Stuck in the knowledge-engineering mire, computational linguistics had a near-death experience in the late 1980s. Since then, learning-based methods have swept the field, to the point where it’s hard to find a paper devoid of learning in a computational linguistics conference. Statistical parsers analyze language with accuracy close to that of humans, where hand-coded ones lagged far behind. Machine translation, spelling correction, part-of-speech tagging, word sense disambiguation, question answering, dialogue, summarization: the best systems in these areas all use learning. Watson, the Jeopardy! computer champion, would not have been possible without it.

To this Chomsky might reply that engineering successes are not proof of scientific validity. On the other hand, if your buildings collapse and your engines don’t run, perhaps something is wrong with your theory of physics. Chomsky thinks linguists should focus on “ideal” speaker-listeners, as defined by him, and this gives him license to ignore things like the need for statistics in language learning. Perhaps it’s not surprising, then, that few experimentalists take his theories seriously any more.

Another potential source of objections to the Master Algorithm is the notion, popularized by the psychologist Jerry Fodor, that the mind is composed of a set of modules with only limited communication between them. For example, when you watch TV your “higher brain” knows that it’s only light flickering on a flat surface, but your visual system still sees three-dimensional shapes. Even if we believe in the modularity of mind, however, that does not imply that different modules use different learning algorithms. The same algorithm operating on, say, visual and verbal information may suffice.

Critics like Minsky, Chomsky, and Fodor once had the upper hand, but thankfully their influence has waned. Nevertheless, we should keep their criticisms in mind as we set out on the road to the Master Algorithm for two reasons. The first is that knowledge engineers faced many of the same problems machine learners do, and even if they didn’t succeed, they learned many valuable lessons. The second is that learning and knowledge are intertwined in surprisingly subtle ways, as we’ll soon find out. Unfortunately, the two camps often talk past each other. They speak different languages: machine learning speaks probability, and knowledge engineering speaks logic. Later in the book we’ll see what to do about this.

Swan bites robot

“No matter how smart your algorithm, there are some things it just can’t learn.” Outside of AI and cognitive science, the most common objections to machine learning are variants of this claim. Nassim Taleb hammered on it forcefully in his book The Black Swan . Some events are simply not predictable. If you’ve only ever seen white swans, you think the probability of ever seeing a black one is zero. The financial meltdown of 2008 was a “black swan.”

It’s true that some things are predictable and some aren’t, and the first duty of the machine learner is to distinguish between them. But the goal of the Master Algorithm is to learn everything that can be known, and that’s a vastly wider domain than Taleb and others imagine. The housing bust was far from a black swan; on the contrary, it was widely predicted. Most banks’ models failed to see it coming, but that was due to well-understood limitations of those models, not limitations of machine learning in general. Learning algorithms are quite capable of accurately predicting rare, never-before-seen events; you could even say that that’s what machine learning is all about. What’s the probability of a black swan if you’ve never seen one? How about it’s the fraction of known species that belatedly turned out to have black specimens? This is only a crude example; we’ll see many deeper ones in this book.

A related, frequently heard objection is “Data can’t replace human intuition.” In fact, it’s the other way around: human intuition can’t replace data. Intuition is what you use when you don’t know the facts, and since you often don’t, intuition is precious. But when the evidence is before you, why would you deny it? Statistical analysis beats talent scouts in baseball (as Michael Lewis memorably documented in Moneyball ), it beats connoisseurs at wine tasting, and every day we see new examples of what it can do. Because of the influx of data, the boundary between evidence and intuition is shifting rapidly, and as with any revolution, entrenched ways have to be overcome. If I’m the expert on X at company Y, I don’t like to be overridden by some guy with data. There’s a saying in industry: “Listen to your customers, not to the HiPPO,” HiPPO being short for “highest paid person’s opinion.” If you want to be tomorrow’s authority, ride the data, don’t fight it.

OK, some say, machine learning can find statistical regularities in data, but it will never discover anything deep, like Newton’s laws. It arguably hasn’t yet, but I bet it will. Stories of falling apples notwithstanding, deep scientific truths are not low-hanging fruit. Science goes through three phases, which we can call the Brahe, Kepler, and Newton phases. In the Brahe phase, we gather lots of data, like Tycho Brahe patiently recording the positions of the planets night after night, year after year. In the Kepler phase, we fit empirical laws to the data, like Kepler did to the planets’ motions. In the Newton phase, we discover the deeper truths. Most science consists of Brahe- and Kepler-like work; Newton moments are rare. Today, big data does the work of billions of Brahes, and machine learning the work of millions of Keplers. If-let’s hope so-there are more Newton moments to be had, they are as likely to come from tomorrow’s learning algorithms as from tomorrow’s even more overwhelmed scientists, or at least from a combination of the two. (Of course, the Nobel prizes will go to the scientists, whether they have the key insights or just push the button. Learning algorithms have no ambitions of their own.) We’ll see in this book what those algorithms might look like and speculate about what they might discover-such as a cure for cancer.

Читать дальше
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World»

Представляем Вашему вниманию похожие книги на «The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё не прочитанные произведения.


Отзывы о книге «The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World»

Обсуждение, отзывы о книге «The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.