• Пожаловаться

Pedro Domingos: The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World

Здесь есть возможность читать онлайн «Pedro Domingos: The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World» весь текст электронной книги совершенно бесплатно (целиком полную версию). В некоторых случаях присутствует краткое содержание. категория: Прочая околокомпьтерная литература / на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале. Библиотека «Либ Кат» — LibCat.ru создана для любителей полистать хорошую книжку и предлагает широкий выбор жанров:

любовные романы фантастика и фэнтези приключения детективы и триллеры эротика документальные научные юмористические анекдоты о бизнесе проза детские сказки о религиии новинки православные старинные про компьютеры программирование на английском домоводство поэзия

Выбрав категорию по душе Вы сможете найти действительно стоящие книги и насладиться погружением в мир воображения, прочувствовать переживания героев или узнать для себя что-то новое, совершить внутреннее открытие. Подробная информация для ознакомления по текущему запросу представлена ниже:

Pedro Domingos The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World

The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Algorithms increasingly run our lives. They find books, movies, jobs, and dates for us, manage our investments, and discover new drugs. More and more, these algorithms work by learning from the trails of data we leave in our newly digital world. Like curious children, they observe us, imitate, and experiment. And in the world’s top research labs and universities, the race is on to invent the ultimate learning algorithm: one capable of discovering any knowledge from data, and doing anything we want, before we even ask. Machine learning is the automation of discovery-the scientific method on steroids-that enables intelligent robots and computers to program themselves. No field of science today is more important yet more shrouded in mystery. Pedro Domingos, one of the field’s leading lights, lifts the veil for the first time to give us a peek inside the learning machines that power Google, Amazon, and your smartphone. He charts a course through machine learning’s five major schools of thought, showing how they turn ideas from neuroscience, evolution, psychology, physics, and statistics into algorithms ready to serve you. Step by step, he assembles a blueprint for the future universal learner-the Master Algorithm-and discusses what it means for you, and for the future of business, science, and society. If data-ism is today’s rising philosophy, this book will be its bible. The quest for universal learning is one of the most significant, fascinating, and revolutionary intellectual developments of all time. A groundbreaking book, The Master Algorithm is the essential guide for anyone and everyone wanting to understand not just how the revolution will happen, but how to be at its forefront.

Pedro Domingos: другие книги автора


Кто написал The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World? Узнайте фамилию, как зовут автора книги и список всех его произведений по сериям.

The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать

Here, then, is the central hypothesis of this book:

All knowledge-past, present, and future-can be derived from data by a single, universal learning algorithm.

I call this learner the Master Algorithm. If such an algorithm is possible, inventing it would be one of the greatest scientific achievements of all time. In fact, the Master Algorithm is the last thing we’ll ever have to invent because, once we let it loose, it will go on to invent everything else that can be invented. All we need to do is provide it with enough of the right kind of data, and it will discover the corresponding knowledge. Give it a video stream, and it learns to see. Give it a library, and it learns to read. Give it the results of physics experiments, and it discovers the laws of physics. Give it DNA crystallography data, and it discovers the structure of DNA.

This may sound far-fetched: How could one algorithm possibly learn so many different things and such difficult ones? But in fact many lines of evidence point to the existence of a Master Algorithm. Let’s see what they are.

The argument from neuroscience

In April 2000, a team of neuroscientists from MIT reported in Nature the results of an extraordinary experiment. They rewired the brain of a ferret, rerouting the connections from the eyes to the auditory cortex (the part of the brain responsible for processing sounds) and rerouting the connections from the ears to the visual cortex. You’d think the result would be a severely disabled ferret, but no: the auditory cortex learned to see, the visual cortex learned to hear, and the ferret was fine. In normal mammals, the visual cortex contains a map of the retina: neurons connected to nearby regions of the retina are close to each other in the cortex. Instead, the rewired ferrets developed a map of the retina in the auditory cortex. If the visual input is redirected instead to the somatosensory cortex, responsible for touch perception, it too learns to see. Other mammals also have this ability.

In congenitally blind people, the visual cortex can take over other brain functions. In deaf ones, the auditory cortex does the same. Blind people can learn to “see” with their tongues by sending video images from a head-mounted camera to an array of electrodes placed on the tongue, with high voltages corresponding to bright pixels and low voltages to dark ones. Ben Underwood was a blind kid who taught himself to use echolocation to navigate, like bats do. By clicking his tongue and listening to the echoes, he could walk around without bumping into obstacles, ride a skateboard, and even play basketball. All of this is evidence that the brain uses the same learning algorithm throughout, with the areas dedicated to the different senses distinguished only by the different inputs they are connected to (e.g., eyes, ears, nose). In turn, the associative areas acquire their function by being connected to multiple sensory regions, and the “executive” areas acquire theirs by connecting the associative areas and motor output.

Examining the cortex under a microscope leads to the same conclusion. The same wiring pattern is repeated everywhere. The cortex is organized into columns with six distinct layers, feedback loops running to another brain structure called the thalamus, and a recurring pattern of short-range inhibitory connections and longer-range excitatory ones. A certain amount of variation is present, but it looks more like different parameters or settings of the same algorithm than different algorithms. Low-level sensory areas have more noticeable differences, but as the rewiring experiments show, these are not crucial. The cerebellum, the evolutionarily older part of the brain responsible for low-level motor control, has a clearly different and very regular architecture, built out of much smaller neurons, so it would seem that at least motor learning uses a different algorithm. If someone’s cerebellum is injured, however, the cortex takes over its function. Thus it seems that evolution kept the cerebellum around not because it does something the cortex can’t, but just because it’s more efficient.

The computations taking place within the brain’s architecture are also similar throughout. All information in the brain is represented in the same way, via the electrical firing patterns of neurons. The learning mechanism is also the same: memories are formed by strengthening the connections between neurons that fire together, using a biochemical process known as long-term potentiation. All this is not just true of humans: different animals have similar brains. Ours is unusually large, but seems to be built along the same principles as other animals’.

Another line of argument for the unity of the cortex comes from what might be called the poverty of the genome. The number of connections in your brain is over a million times the number of letters in your genome, so it’s not physically possible for the genome to specify in detail how the brain is wired.

The most important argument for the brain being the Master Algorithm, however, is that it’s responsible for everything we can perceive and imagine. If something exists but the brain can’t learn it, we don’t know it exists. We may just not see it or think it’s random. Either way, if we implement the brain in a computer, that algorithm can learn everything we can. Thus one route-arguably the most popular one-to inventing the Master Algorithm is to reverse engineer the brain. Jeff Hawkins took a stab at this in his book On Intelligence . Ray Kurzweil pins his hopes for the Singularity-the rise of artificial intelligence that greatly exceeds the human variety-on doing just that and takes a stab at it himself in his book How to Create a Mind . Nevertheless, this is only one of several possible approaches, as we’ll see. It’s not even necessarily the most promising one, because the brain is phenomenally complex, and we’re still in the very early stages of deciphering it. On the other hand, if we can’t figure out the Master Algorithm, the Singularity won’t happen any time soon.

Not all neuroscientists believe in the unity of the cortex; we need to learn more before we can be sure. The question of just what the brain can and can’t learn is also hotly debated. But if there’s something we know but the brain can’t learn, it must have been learned by evolution.

The argument from evolution

Life’s infinite variety is the result of a single mechanism: natural selection. Even more remarkable, this mechanism is of a type very familiar to computer scientists: iterative search, where we solve a problem by trying many candidate solutions, selecting and modifying the best ones, and repeating these steps as many times as necessary. Evolution is an algorithm. Paraphrasing Charles Babbage, the Victorian-era computer pioneer, God created not species but the algorithm for creating species. The “endless forms most beautiful” Darwin spoke of in the conclusion of The Origin of Species belie a most beautiful unity: all of those forms are encoded in strings of DNA, and all of them come about by modifying and combining those strings. Who would have guessed, given only a description of this algorithm, that it could produce you and me? If evolution can learn us, it can conceivably also learn everything that can be learned, provided we implement it on a powerful enough computer. Indeed, evolving programs by simulating natural selection is a popular endeavor in machine learning. Evolution, then, is another promising path to the Master Algorithm.

Evolution is the ultimate example of how much a simple learning algorithm can achieve given enough data. Its input is the experience and fate of all living creatures that ever existed. (Now that’s big data.) On the other hand, it’s been running for over three billion years on the most powerful computer on Earth: Earth itself. A computer version of it had better be faster and less data intensive than the original. Which one is the better model for the Master Algorithm: evolution or the brain? This is machine learning’s version of the nature versus nurture debate. And, just as nature and nurture combine to produce us, perhaps the true Master Algorithm contains elements of both.

Читать дальше
Тёмная тема

Шрифт:

Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World»

Представляем Вашему вниманию похожие книги на «The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё не прочитанные произведения.


Отзывы о книге «The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World»

Обсуждение, отзывы о книге «The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.