These benefits apply in both our personal and professional lives. How do I make the best of the trail of data that my every step in the modern world leaves? Every transaction works on two levels: what it accomplishes for you and what it teaches the system you just interacted with. Being aware of this is the first step to a happy life in the twenty-first century. Teach the learners, and they will serve you; but first you need to understand them. What in my job can be done by a learning algorithm, what can’t, and-most important-how can I take advantage of machine learning to do it better? The computer is your tool, not your adversary. Armed with machine learning, a manager becomes a supermanager, a scientist a superscientist, an engineer a superengineer. The future belongs to those who understand at a very deep level how to combine their unique expertise with what algorithms do best.
But perhaps the Master Algorithm is a Pandora’s box best left closed. Will computers enslave us or even exterminate us? Will machine learning be the handmaiden of dictators or evil corporations? Knowing where machine learning is headed will help us to understand what to worry about, what not, and what to do about it. The Terminator scenario, where a super-AI becomes sentient and subdues mankind with a robot army, has no chance of coming to pass with the kinds of learning algorithms we’ll meet in this book. Just because computers can learn doesn’t mean they magically acquire a will of their own. Learners learn to achieve the goals we set them; they don’t get to change the goals. Rather, we need to worry about them trying to serve us in ways that do more harm than good because they don’t know any better, and the cure for that is to teach them better.
Most of all, we have to worry about what the Master Algorithm could do in the wrong hands. The first line of defense is to make sure the good guys get it first-or, if it’s not clear who the good guys are, to make sure it’s open-sourced. The second is to realize that, no matter how good the learning algorithm is, it’s only as good as the data it gets. He who controls the data controls the learner. Your reaction to the datafication of life should not be to retreat to a log cabin-the woods, too, are full of sensors-but to aggressively seek control of the data that matters to you. It’s good to have recommenders that find what you want and bring it to you; you’d feel lost without them. But they should bring you what you want, not what someone else wants you to have. Control of data and ownership of the models learned from it is what many of the twenty-first century’s battles will be about-between governments, corporations, unions, and individuals. But you also have an ethical duty to share data for the common good. Machine learning alone will not cure cancer; cancer patients will, by sharing their data for the benefit of future patients.
A different theory of everything
Science today is thoroughly balkanized, a Tower of Babel where each subcommunity speaks its own jargon and can see only into a few adjacent subcommunities. The Master Algorithm would provide a unifying view of all of science and potentially lead to a new theory of everything. At first this may seem like an odd claim. What machine learning does is induce theories from data. How could the Master Algorithm itself grow into a theory? Isn’t string theory the theory of everything, and the Master Algorithm nothing like it?
To answer these questions, we have to first understand what a scientific theory is and is not. A theory is a set of constraints on what the world could be, not a complete description of it. To obtain the latter, you have to combine the theory with data. For example, consider Newton’s second law. It says that force equals mass times acceleration, or F = ma . It does not say what the mass or acceleration of any object are, or the forces acting on it. It only requires that, if the mass of an object is m and its acceleration is a , then the total force on it must be ma . It removes some of the universe’s degrees of freedom, but not all. The same is true of all other physical theories, including relativity, quantum mechanics, and string theory, which are, in effect, refinements of Newton’s laws.
The power of a theory lies in how much it simplifies our description of the world. Armed with Newton’s laws, we only need to know the masses, positions, and velocities of all objects at one point in time; their positions and velocities at all times follow. So Newton’s laws reduce our description of the world by a factor of the number of distinguishable instants in the history of the universe, past and future. Pretty amazing! Of course, Newton’s laws are only an approximation of the true laws of physics, so let’s replace them with string theory, ignoring all its problems and the question of whether it can ever be empirically validated. Can we do better? Yes, for two reasons.
The first is that, in reality, we never have enough data to completely determine the world. Even ignoring the uncertainty principle, precisely knowing the positions and velocities of all particles in the world at some point in time is not remotely feasible. And because the laws of physics are chaotic, uncertainty compounds over time, and pretty soon they determine very little indeed. To accurately describe the world, we need a fresh batch of data at regular intervals. In effect, the laws of physics only tell us what happens locally. This drastically reduces their power.
The second problem is that, even if we had complete knowledge of the world at some point in time, the laws of physics would still not allow us to determine its past and future. This is because the sheer amount of computation required to make those predictions would be beyond the capabilities of any imaginable computer. In effect, to perfectly simulate the universe we would need another, identical universe. This is why string theory is mostly irrelevant outside of physics. The theories we have in biology, psychology, sociology, or economics are not corollaries of the laws of physics; they had to be created from scratch. We assume that they are approximations of what the laws of physics would predict when applied at the scale of cells, brains, and societies, but there’s no way to know.
Unlike the theories of a given field, which only have power within that field, the Master Algorithm has power across all fields. Within field X, it has less power than field X’s prevailing theory, but across all fields-when we consider the whole world-it has vastly more power than any other theory. The Master Algorithm is the germ of every theory; all we need to add to it to obtain theory X is the minimum amount of data required to induce it. (In the case of physics, that would be just the results of perhaps a few hundred key experiments.) The upshot is that, pound for pound, the Master Algorithm may well be the best starting point for a theory of everything we’ll ever have. Pace Stephen Hawking, it may ultimately tell us more about the mind of God than string theory.
Some may say that seeking a universal learner is the epitome of techno-hubris. But dreaming is not hubris. Maybe the Master Algorithm will take its place among the great chimeras, alongside the philosopher’s stone and the perpetual motion machine. Or perhaps it will be more like finding the longitude at sea, given up as too difficult until a lone genius solved it. More likely, it will be the work of generations, raised stone by stone like a cathedral. The only way to find out is to get up early one day and set out on the journey.
Candidates that don’t make the cut
So, if the Master Algorithm exists, what is it? A seemingly obvious candidate is memorization: just remember everything you’ve seen; after a while you’ll have seen everything there is to see, and therefore know everything there is to know. The problem with this is that, as Heraclitus said, you never step in the same river twice. There’s far more to see than you ever could. No matter how many snowflakes you’ve examined, the next one will be different. Even if you had been present at the Big Bang and everywhere since, you would still have seen only a tiny fraction of what you could see in the future. If you had witnessed life on Earth up to ten thousand years ago, that would not have prepared you for what was to come. Someone who grew up in one city doesn’t become paralyzed when they move to another, but a robot capable only of memorization would. Besides, knowledge is not just a long list of facts. Knowledge is general, and has structure. “All humans are mortal” is much more succinct than seven billion statements of mortality, one for each human. Memorization gives us none of these things.
Читать дальше