Владимир Брюков - Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews

Здесь есть возможность читать онлайн «Владимир Брюков - Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2011, ISBN: 2011, Издательство: КНОРУС; ЦИПСиР, Жанр: personal_finance, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Детально излагаются методики построения стационарных и нестационарных статистических моделей по прогнозированию курса доллара США с использованием программ EViews и Excel. При этом прогнозы по курсу доллара к рублю делаются с упреждением в один месяц, две и одну неделю, а по курсу евро к доллару — с упреждением в один день. Особый акцент сделан на составлении (с установленным инвестором уровнем надежности) прогнозов цен покупки и продажи валют для работы на валютном рынке на основе разработанных статистических моделей. Все методики с успехом применяются на практике.
Для всех, кто интересуется валютным рынком, собирается зарабатывать или уже зарабатывает на этом рынке, хочет научиться делать прогнозы по курсам валют. Для валютных инвесторов, трейдеров и студентов, будущая профессия которых связана с работой в банке, финансовой компании или с операциями на финансовых и товарных рынках.

Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Следует заметить что коэффициент автокорреляции рассчитываемый в EViews - фото 64

Следует заметить, что коэффициент автокорреляции, рассчитываемый в EViews, несколько отличается от обычно вычисляемого коэффициента автокорреляции. Дело в том, что в EViews с целью упрощения вычислений в качестве Y - взята средняя для всей выборки, в то время как обычно для рядов Y t и Y t_ k берутся свои средние.

Частной автокорреляционной функцией называют серию частных коэффициентов автокорреляции г, измеряющих связь между текущим лагом временного ряда Y t и предыдущими лагами временн о го ряда Y t- 1 , Y t_ 2…., Y t_ k_ 1с устранением влияния других промежуточных временных лагов. Вполне естественно, что при нулевом лаге коэффициент частной корреляции ρ 0= 1, а при лаге k = 1 ρ 1 = r 1, т. е. коэффициент частной корреляции равен коэффициенту автокорреляции.

Для лага k больше 1 EViews рекурсивно вычисляет частную автокорреляцию по следующей формуле:

где r k коэффициент автокорреляции для лага k Этот алгоритм вычисления - фото 65

где r k— коэффициент автокорреляции для лага k.

Этот алгоритм вычисления коэффициента частной корреляции, предложенный Боксом и Дженкинсом в 1976 г., представляет собой аппроксимацию. Чтобы найти его более точную оценку, следует решить следующее уравнение регрессии, с помощью которого мы найдем коэффициент частной корреляции ρ k для лага k:

где е t остатки Судя по полученной коррелограмме см табл 31 уровень - фото 66

где е t— остатки.

Судя по полученной коррелограмме (см. табл. 3.1), уровень автокорреляции (АС) между исходными уровнями временного ряда USDollar постоянно убывает начиная с 1-го лага. В свою очередь уровень частной корреляции (РАС) резко снижается уже после 1-го лага, а после 2-го лага осциллирующим образом стремится к нулю (т. е. колеблется вокруг нуля).

В том случае, когда мы хотим построить модель авторегрессионного процесса AR(/?), для определения оптимального числа р мы должны использовать частную автокорреляционную функцию. При этом следует исходить из следующего критерия: оптимальное число р в уравнении авторегрессии должно быть меньше лага, в котором частная автокорреляционная функция начинает стремиться к нулю. Судя по коррелограмме, помещенной в табл. 3.1, коэффициент частной автокорреляции для лага один месяц (или лага 1-го порядка) равен 0,99, а для лага два месяца (или лага 2-го порядка) -0,25. Однако для 3-го порядка коэффициент частной автокорреляции равен -0,014, причем начиная с этого лага величина этого коэффициента колеблется вокруг нулевого уровня. Следовательно, можно сделать вывод, что для прогнозирования курса доллара с помощью модели авторегрессии необходимо использовать модель AR(2), которая примет следующий вид:

В свою очередь при идентификации модели ARMA q в качестве лага р выбирается - фото 67

В свою очередь при идентификации модели ARMA(/? q) в качестве лага р выбирается лаг, после которого начинает убывать частная автокорреляционная функция, а в качестве лага q — лаг, после которого начинает убывать автокорреляционная функция. Исходя из табл. 3.1 легко прийти к выводу, что коэффициент автокорреляции начинает убывать уже с лага 2-го порядка. Аналогичный вывод можно сделать и относительно коэффициента частной автокорреляции. Поэтому для прогнозирования курса доллара с помощью модели авторегрессии со скользящими средними в остатках необходимо использовать модель ARMA(1, 1), которая примет следующий вид:

Два последних столбца в табл 31 показывают соответственно Qстатистику Люнга - фото 68

Два последних столбца в табл. 3.1 показывают соответственно Q-статистику Люнга — Бокса (Q-Stat) и ее значимость (Prob.) для каждого лага. Следует иметь в виду, что Q-статистика для лага k является тестовой статистикой при нулевой гипотезе об отсутствии автокорреляции между динамикой курса доллара временн о го ряда t и динамикой курса доллара временного ряда t- k.

При этом Qстатистика Люнга Бокса для лага k го порядка находится по - фото 69 При этом Qстатистика Люнга Бокса для лага k го порядка находится по - фото 70

При этом Q-статистика Люнга — Бокса для лага k- го порядка находится по следующей формуле:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews»

Представляем Вашему вниманию похожие книги на «Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews»

Обсуждение, отзывы о книге «Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x