P. Newhouse et al. Nicotine Treatment of Mild Cognitive Impairment: A 6-Month Double-Blind Pilot Clinical Trial. — Neurology 78. № 2 (January 10, 2012): 91–101. https://doi.org/10.1212/WNL.0b013e31823efcbb.
W. Linert et al. In Vitro and In Vivo Studies Investigating Possible Antioxidant Actions of Nicotine: Relevance to Parkinson’s and Alzheimer’s Diseases. — Biochimica et Biophysica Acta 1454. № 2 (July 7, 1999): 143–152. https://doi.org/10.1016/S0925-4439(99)00029-0.
T. Nagatsu, M. Sawada. Molecular Mechanism of the Relation of Monoamine Oxidase B and Its Inhibitors to Parkinson’s Disease: Possible Implications of Glial Cells. Journal of Neural Transmission. — Supplementum 71 (2006): 53–65. https://www.ncbi.nlm.nih.gov/pubmed/17447416; Cr. Missale et al. Dopamine Receptors: From Structure to Function. — Physiological Reviews 78. № 1 (January 1998): 189–225. https://doi.org/10.1152/physrev.1998.78.1.189.
Cl. Binda et al. Crystal Structures of Monoamine Oxidase B in Complex with Four Inhibitors of the N-Propargylaminoindan Class. — Journal of Medicinal Chemistry 47. № 7 (2004): 1767–1774. https://doi.org/10.1021/jm031087c.
M. Kumar, J. Andersen. Perspectives on MAO-B in Aging and Neurological Disease: Where Do We Go from Here? — Molecular Neurobiology 30. № 1 (August 2004): 77–89. https://doi.org/10.1385/MN:30:1:077; J. Saura et al. Biphasic and Region-Specific MAO-B Response to Aging in Normal Human Brain. — Neurobiology of Aging 18. № 5 (September — October 1997): 497–507. https://www.ncbi.nlm.nih.gov/pubmed/9390776.
E. Heinonen, R. Lammintausta. A Review of the Pharmacology of Selegiline. Acta Neurologica Scandinavica. — Supplementum 136 (1991): 44–59. https://doi.org/10.1111/j.1600–0404.1991.tb05020.x.
L. Citrome, J. Goldberg, K. Bl. Portland. Placing Transdermal Selegiline for Major Depressive Disorder into Clinical Context: Number Needed to Treat, Number Needed to Harm, and Likelihood to Be Helped or Harmed. — Journal of Affective Disorders 151. № 2 (November 2013): 409–417. https://doi.org/10.1016/j.jad.2013.06.027.
C. Maier, P. Chan. Role of Superoxide Dismutases in Oxidative Damage and Neurodegenerative Disorders. — Neuroscientist 8. № 4 (August 2002): 323–334. https://doi.org/10.1177/107385840200800408.
N. Milgram et al. Maintenance on L-Deprenyl Prolongs Life in Aged Male Rats. — Life Sciences 47. № 5 (1990): 415–420. https://doi.org/10.1016/0024–3205(90)90299-7; K. Kitani et al. (-)Deprenyl Increases the Life Span as Well as Activities of Superoxide Dismutase and Catalase but Not of Glutathione Peroxidase in Selective Brain Regions in Fischer Rats. — Annals of the New York Academy of Sciences 717 (June 30, 1994): 60–71. https://doi.org/10.1111/j.1749–6632.1994.tb12073.x.
J. Knoll. The Striatal Dopamine Dependency of Life Span in Male Rats. Longevity Study with (-) Deprenyl. — Mechanisms of Ageing and Development 46. № 1–3 (December 1988): 237–262. https://doi.org/10.1016/0047–6374(88)90128-5.
J. Knoll. The Striatal Dopamine Dependency.
G. Ghirlanda et al. Evidence of Plasma CoQ10-Lowering Effect by HMG-CoA Reductase Inhibitors: A Double-Blind, Placebo-Controlled Study. — Journal of Clinical Pharmacology 33. № 3 (1993): 226–229. https://doi.org/10.1002/j.1552–4604.1993.tb03948.x.
S. Jaber, Br. Polster. Idebenone and Neuroprotection: Antioxidant, Pro-Oxidant, or Electron Carrier? — Journal of Bioenergetics and Biomembranes 47. № 1–2 (2014): 111–118. https://doi.org/10.1007/s10863-014-9571-y.
X. J. Liu, W. T. Wu. Effects of Ligustrazine, Tanshinone II A, Ubiquinone, and Idebenone on Mouse Water Maze Performance. — Zhongguo Yao Li Xue Bao 20. № 11 (November 1999): 987–990. https://www.ncbi.nlm.nih.gov/pubmed/11270979.
K. Murase et al. Stimulation of Nerve Growth Factor Synthesis/Secretion in Mouse Astroglial Cells by Coenzymes. — Biochemistry and Molecular Biology International 30. № 4 (July 1993): 615–621. https://www.ncbi.nlm.nih.gov/pubmed/8401318.
N. Noji et al. Simple and Sensitive Method for Pyrroloquinoline Quinone (PQQ) Analysis in Various Foods Using Liquid Chromatography/Electrospray-Ionization Tandem Mass Spectrometry. — Journal of Agricultural and Food Chemistry 55. № 18 (September 5, 2007): 7258–7263. https://doi.org/10.1021/jf070483r.
K. Bauerly et al. Pyrroloquinoline Quinone Nutritional Status Alters Lysine Metabolism and Modulates Mitochondrial DNA — Content in the Mouse and Rat. Biochimica et Biophysica Acta 1760. № 11 (November 2006): 1741–1748. https://doi.org/10.1016/j.bbagen.2006.07.009.
C. Harris et al. Dietary Pyrroloquinoline Quinone (PQQ) Alters Indicators of Inflammation and Mitochondrial-Related Metabolism in Human Subjects. — The Journal of Nutritional Biochemistry 24. № 12 (December 2013): 2076–2084. https://doi.org/10.1016/j.jnutbio.2013.07.008.
K. Bauerly et al. Altering Pyrroloquinoline Quinone Nutritional Status Modulates Mitochondrial, Lipid, and Energy Metabolism in Rats. — PLoS One 6. № 7 (2011): e21779. https://doi.org/10.1371/journal.pone.0021779.
K. Nunome et al. Pyrroloquinoline Quinone Prevents Oxidative Stress-Induced Neuronal Death Probably Through Changes in Oxidative Status of DJ-1. — Biological and Pharmaceutical Bulletin 31. № 7 (July 2008): 1321–1326. https://doi.org/10.1248/bpb.31.1321.
F. Steinberg, M. Gershwin, R. Rucker. Dietary Pyrroloquinoline Quinone: Growth and Immune Response in BALB/c Mice. — The Journal of Nutrition 124. № 5 (May 1994): 744–753. https://doi.org/10.1093/jn/124.5.744.
K. Ohwada et al. Pyrroloquinoline Quinone (PQQ) Prevents Cognitive Deficit Caused by Oxidative Stress in Rats. — Journal of Clinical Biochemistry and Nutrition 42. № 1 (January 2008): 29–34. https://doi.org/10.3164/jcbn.2008005.
B. Zhu et al. Pyrroloquinoline Quinone (PQQ) Decreases Myocardial Infarct Size and Improves Cardiac Function in Rat Models of Ischemia and Ischemia/Reperfusion. — Cardiovascular Drugs and Therapy 18. № 6 (November 2004): 421–431. https://doi.org/10.1007/s10557-004-6219-x.
P. Puigserver. Tissue-Specific Regulation of Metabolic Pathways Through the Transcriptional Coactivator PGC1-alpha. — International Journal of Obesity 29, Supplement 1 (March 2005): S5–S9. https://doi.org/10.1038/sj.ijo.0802905.
Ch. Miodownik et al. Serum Levels of Brain-Derived Neurotrophic Factor and Cortisol to Sulfate of Dehydroepiandrosterone Molar Ratio Associated with Clinical Response to L-Theanine as Augmentation of Antipsychotic Therapy in Schizophrenia and Schizoaffective Disorder Patients. — Clinical Neuropharmacology 34. № 4 (July — August 2011): 155–160. https://doi.org/10.1097/WNF.0b013e318220d8c6.
K. Kimura et al. L-Theanine Reduces Psychological and Physiological Stress Responses. — Biological Psychology 74. № 1 (January 2007): 39–45. https://doi.org/10.1016/j.biopsycho.2006.06.006.
Читать дальше
Конец ознакомительного отрывка
Купить книгу