Анри Рухадзе - События и люди. Издание пятое, исправленное и дополненное.

Здесь есть возможность читать онлайн «Анри Рухадзе - События и люди. Издание пятое, исправленное и дополненное.» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, ISBN: , Издательство: Научтехлитиздат, Жанр: Биографии и Мемуары, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

События и люди. Издание пятое, исправленное и дополненное.: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «События и люди. Издание пятое, исправленное и дополненное.»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Книга известного российского физика-теоретика А. А. Рухадзе включает в себя воспоминания, а также публицистические заметки, опубликованные в средствах массовой информации в 1996–2009 гг.

События и люди. Издание пятое, исправленное и дополненное. — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «События и люди. Издание пятое, исправленное и дополненное.», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Сказанное стало физически очевидным после того, как была понята природа затухания Ландау, а следовательно, и всей «бесстолкновительной» диссипации. Эта природа явно видна из правила обхода полюса ω = kv , предложенного Ландау в виде соотношения (19). Из этого соотношения следует, что за диссипацию энергии в плазме ответственны частицы, для которых выполнено условие ω = kv , представляющие собой условие черенковского излучения и поглощения частицами электромагнитных волн. Очевидно, что вероятности излучения и поглощения поля заряженной частицей равны между собой, а поэтому какой из процессов — излучение (а следовательно, усиление поля) или поглощение (т. е. затухание поля) — преобладает, зависит от функции распределения частиц по скоростям в области v = ω/k . Если дf 0 /дv < 0, как это имеет место в случае равновесного максвелловского распределения, то, как видно из уравнения (17), происходит поглощение поля и возникает затухание Ландау; если же в этой области имеет место обратное неравенство, то в плазме возможно усиление электромагнитной волны [54] Из такой трактовки физической природы «бесстолкновительной» диссипации, в частности, следует существование в данном приближении вообще незатухающих колебаний. Очевидно, что затухание Ландау должно отсутствовать, если равновесное распределение таково, что в области скоростей вблизи фазовой скорости волны ω/k величина дf 0 /дv = 0, либо в этой области скоростей вообще нет частиц, как это имеет место, например, в случае вырожденного распределения Ферми при ω/k > V F , а также при ω/k > c (подробнее см. монографию [9]). .

Уравнение Власова как уравнение с самосогласованным полем учитывает непосредственное взаимодействие заряженной частицы с полем, т. е. процесс излучения и поглощения как эффект первого порядка малости по параметру (4). В следующем же порядке по этому параметру появляется взаимодействие частиц между собой как процесс излучения поля одной частицей и его поглощения другой. Это уже есть парное столкновение частиц, учитываемое интегралом столкновений Ландау. Таким образом, обобщенное кинетическое уравнение Власова-Ландау представляет собой кинетическое уравнение для описания плазмы, учитывающее взаимодействие частиц не только в первом порядке по параметру (4), но и во втором.

5. Все изложенное выше фактически уже было сказано в работе А. А. Власова [3], которая, в свою очередь, была инициирована работой Л. Д. Ландау [1]. В работе А. А. Власова [3] было дано физическое обоснование не только кинетического уравнения с самосогласованным полем уравнения Власова, учитывающего главную часть кулоновского взаимодействия частиц в плазме, но также было четко указано, что интеграл столкновений Ландау учитывает эффекты следующего порядка малости по кулоновскому взаимодействию частиц. Более того, А. А. Власов полагал, что кинетическое уравнение с самосогласованным полем обязательно должно быть дополнено интегралом столкновений Ландау, чтобы правильно описать затухание колебаний со временем. Нетривиальные решения однородной системы уравнений Власова-Максвелла вида плоской волны существуют, по мнению А. А. Власова, при определенной связи действительных ω и k , которая находится из дисперсионного уравнения. Таким образом, А. А. Власов впервые ввел в кинетической теории колебаний плазмы понятие дисперсионного уравнения и нашел его решение в виде ω = ω ( k ) для продольных колебаний. В свою очередь Л. Д. Ландау правильно указал на неполноту анализа малых колебаний, проведенного А. А. Власовым. При этом он показал, что даже в «бесстолкновительном» приближении малые начальные возмущения могут затухать со временем. Природа этого затухания связана с черенковским излучением и поглощением волн заряженными частицами плазмы. Найденное для случая равновесной максвелловской плазмы затухание продольных электронных колебаний по праву получило название затухания Ландау. Таким образом, работа Л. Д. Ландау [2] как бы завершила развитие физических основ кинетической теории А. А. Власова, указав на особенности решения введенного им кинетического уравнения. Математическое же обоснование кинетическая теория Власова получила, как уже отмечалось выше, в монографии Н.Н. Боголюбова [4]. В этой монографии Н. Н. Боголюбовым, с одной стороны, были разработаны методы получения кинетических уравнений в случае системы нейтральных частиц, сильно взаимодействующих между собой при тесных сближениях, но в среднем находящихся на расстояниях, больших характерного радиуса взаимодействия (уравнение Больцмана). С другой, им было обосновано кинетическое уравнение и в случае системы кулоновски взаимодействующих частиц, когда радиус взаимодействия намного больше среднего расстояния между частицами, и по этой причине средний потенциал взаимодействия намного меньше средней кинетической энергии частиц (уравнение Власова-Ландау). Таким образом, в этой монографии обоснованы как уравнение Больцмана, так и уравнение Власова с интегралом столкновений Ландау. Мы не будем здесь излагать суть этого обоснования, оно носит во многом математический характер и к тому же изложено во многих монографиях и даже учебниках по статистической физике газов и плазмы. Кроме того, насколько нам известно, на эту тему Ю.Л. Климонтовичем подготовлен обзор в «УФН», посвященный 50-летию публикации работы Л. Д. Ландау [2], и, естественно, проблемы обоснования кинетической теории плазмы в этом обзоре занимают центральное место.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «События и люди. Издание пятое, исправленное и дополненное.»

Представляем Вашему вниманию похожие книги на «События и люди. Издание пятое, исправленное и дополненное.» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «События и люди. Издание пятое, исправленное и дополненное.»

Обсуждение, отзывы о книге «События и люди. Издание пятое, исправленное и дополненное.» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x