Max Geitel - Schöpfungen der Ingenieurtechnik der Neuzeit
Здесь есть возможность читать онлайн «Max Geitel - Schöpfungen der Ingenieurtechnik der Neuzeit» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: foreign_antique, foreign_prose, на немецком языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:Schöpfungen der Ingenieurtechnik der Neuzeit
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:3 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
- 60
- 1
- 2
- 3
- 4
- 5
Schöpfungen der Ingenieurtechnik der Neuzeit: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Schöpfungen der Ingenieurtechnik der Neuzeit»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
Schöpfungen der Ingenieurtechnik der Neuzeit — читать онлайн ознакомительный отрывок
Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Schöpfungen der Ingenieurtechnik der Neuzeit», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.
Интервал:
Закладка:
Der höchste Wolkenkratzer ist das in dargestellte Woolworth-Gebäude in New York, das mit einem Kostenaufwand von 80 Mill. Mk. errichtet wurde. Es liegt am Broadway mit einer Front von 47 m und auf dem Park Place und Barklay Street mit einer Fassadenlänge von je 60 m. Der Turm erhebt sich vom Broadway mit 55 Stockwerken und besitzt 26 m im Quadrat. Der übrige Teil des Gebäudes hat 29 Stockwerke. Die Höhe des Turms über dem Straßenpflaster beträgt 221 m. Da auch unter der Straße noch Geschosse von 37,50 m Tiefe liegen, so ergibt sich eine Gesamthöhe vom Fundament bis zur Spitze des Turms von 258,50 m. Wenn sämtliche Räume vermietet sind, faßt der Bau 10 000 Personen. Der ausführende Architekt Cass Gilbert hat es verstanden, durch Anwendung des gotischen Stils und durch eigenartige Farbenzusammenstellung des Mauerwerks einen durchaus künstlerisch und harmonisch wirkenden Eindruck zu erwecken. Die von der Otis-Gesellschaft gelieferten, den Innenverkehr vermittelnden gewaltigen 26 elektrischen Fahrstühle besitzen eine Geschwindigkeit von 3,5 m in der Sekunde.
Angesichts der Wohnungsnot ist man auch in Deutschland dem Bau von Wolkenkratzern nähergetreten, wegen der hohen Eisenpreise aber bisher ohne tatsächlichen Erfolg. Da ist von Interesse, daß der Bau von Häusern bis zu 22 Stockwerken möglich ist ohne Anwendung von Eisen. Vorbedingung für derartige hohe Häuser ist, daß sie mit rundem oder elliptischem Grundriß aufgeführt werden und hierdurch befähigt sind, dem Winddruck besser zu widerstehen als Gebäude mit flachen Wänden und rechteckigem Grundriß.
In der neuesten Zeit nimmt der Eisenbeton in schnell steigendem Maße an Bedeutung als Baustoff zu. Derselbe besteht aus einer innigen Vereinigung von Eisen und Beton und verdankt seine hohe Festigkeit dem Umstande, daß jeder der beiden Baustoffe, aus denen er zusammengesetzt ist, diejenige Beanspruchung aufnimmt, wofür er besonders geeignet ist. Das Eisen nimmt die Zugspannungen, der Beton nimmt die Druckbeanspruchungen auf. Der Eisenbeton, der sich durch unbedingte Feuersicherheit, schnelle und billige Ausführbarkeit, Dauerhaftigkeit und leichtes Anpassungsvermögen auszeichnet, wird in der Weise hergestellt, daß ein Netzwerk von Eisenstäben, das in seiner Gestalt dem zu schaffenden Bauwerk entspricht, von einer Schalung umgeben wird und in dieser Schalung mit flüssigem Beton umgossen wird, der bei seiner Erstarrung eine unlösbare Verbindung mit dem eisernen Netzwerk eingeht. Die weitestgehende Verwendung findet der Eisenbeton zunächst im Hoch- und Brückenbau, sodann im Tiefbau und im Wasserbau. Die weitest gespannte Eisenbetonbrücke überschreitet den Mississippi bei Minneapolis mit einem Bogen von 121,92 m Weite und 26,82 m Pfeilhöhe. Jenseits des Ozeans verwendet man den Eisenbeton auch als Baustoff für Wolkenkratzer. Neuerdings hat der Eisenbeton eine zunehmende Bedeutung als Schiffbaustoff gewonnen, und zwar sowohl für Binnen-, wie für Seeschiffe. Als Vorzüge des Eisenbetonschiffbaus sind außer den bereits genannten zu nennen: Wasserdichtheit, elastisches Verhalten gegen Stoß, kurze Bauzeit, Möglichkeit der Reihenherstellung von Schiffen gleicher Bauart, geringe Reibung im Wasser, hohe Widerstandskraft gegen Seewasser, geringer Ansatz von Pflanzen und Muscheln am Schiffskörper. Anfangs wurde die Einführung des Eisenbetons in den Schiffbau durch den Umstand stark erschwert, daß sich das Eigengewicht der Schiffe im Verhältnis zu deren Ladefähigkeit sehr ungünstig gestaltete. Dieses Mißverhältnis scheint aber durch Schaffung eines sehr leichten Betons beseitigt zu sein. Schließlich werden jetzt auch Eisenbahnwagen in steigendem Maße aus Eisenbeton hergestellt. Der aus Eisenbeton hergestellte Wagen hat gegenüber dem eisernen Wagen den großen, bei den jetzigen hohen Eisenpreisen besonders wichtigen Vorzug, daß er erheblich weniger Eisen in Anspruch nimmt; so stehen beispielsweise den 2200 kg Profileisen des eisernen offenen 20 t-Güterwagens nur 700 kg Bandeisen und 200 kg Flach- und Quadrateisen des Eisenbetonwagens gegenüber.
II. Tunnelbauten
Von jeher hat der Riesenwall der Alpen den Wagemut der durch ihn voneinander getrennten Völkerschaften erregt.
Die ersten großen über die Alpen führenden Verkehrsstraßen stammen aus dem 18. Jahrhundert: Kaiserin Maria Theresia erbaute 1772 die über den Brenner führende »Kaiserstraße«; Napoleon I. schuf die Heerstraßen über den Mont Cenis und über den Simplon. Noch andre die Alpen überschreitende Straßen folgten, und als die Eisenbahnen in die Erscheinung traten, da gesellten sich zu diesen die das Gebirgsmassiv durchbohrenden Tunnel, die höchsten Glanzleistungen neuzeitlicher Ingenieurtechnik darstellend. Der erste größere Tunnelbau war der 2½ km lange Hauensteintunnel bei Olten in der Schweiz. Derselbe hat nebenbei eine traurige Berühmtheit dadurch erlangt, daß während seines Baues am 28. Mai 1857 70 Arbeiter durch den Einsturz eines Schachtes den Tod fanden. Die hier gesammelten Erfahrungen ermutigten im Jahre 1859 zum Bau des 12 km langen Mont Cenistunnels, der nach 11jähriger Bauzeit zum Durchschlag und im 12. Jahre zur Vollendung gebracht wurde. Der tägliche Vortrieb betrug, da man allein über Handbohrung verfügte, auf jeder Seite nur 1,5 m täglich. Der im Jahre 1872 begonnene, am 29. Februar 1880 zum Durchschlag gebrachte Gotthardtunnel hat eine Länge von 14,984 km; hier erzielte man, da inzwischen die Tunnelbohrmaschine ins Leben gerufen war, einen täglichen Fortschritt von 2,11 m auf jeder Seite.
Der nächste in Angriff genommene große Alpentunnel war der den Simplon durchschneidende. Er ist ein unmittelbarer und scharfer Nebenbuhler seiner beiden Vorgänger, denn ihm liegt, gleich jenen, dieselbe große Aufgabe innerhalb des internationalen Verkehrs zwischen dem Norden und Süden Europas ob. Diese Aufgabe zwang schon bei der Festlegung der beiden Tunnelmündungen zu wichtigen Erwägungen. Ein Tunnel ist um so billiger und schneller herzustellen, je kürzer er ist, oder, mit anderen Worten, in je größerer Höhe er das Gebirge durchbohrt. Hiermit wachsen aber die Schwierigkeiten, die sich der Beförderung der Züge entgegenstellen. Diese müssen größere und länger ausgedehnte Steigungen hinaufbefördert werden, und die im Freien liegenden Eisenbahnstrecken können gegen Schneeverwehungen und sonstige Naturereignisse nur unter erheblichem Aufwand von Personal- und Unterhaltungskosten geschützt werden. Demnach hat man dem Simplontunnel, um ihn zu einem stets betriebsbereiten Mittel des internationalen Verkehrs zu machen, eine möglichst tiefe Lage gegeben und ihn als einen sog. Basistunnel, der den Gebirgsstock an seiner Wurzel durchfährt, ausgeführt. Der Simplontunnel liegt 450 m tiefer als der Gotthardtunnel. Trotzdem aber konnte man ihn derart in das Gelände einfügen, daß er nur 5 km länger ist als der Gotthardtunnel, nämlich 19,803 km. Die nördlich bei Brig gelegene Tunnelmündung liegt 686 m, die südliche, bei Iselle liegt 634 m über dem Meere.
Wie bei allen großen Gebirgstunneln stellte die trigonometrische Festlegung der Tunnelachse die höchsten Anforderungen an deren Leiter, Professor Rosenmund-Zürich, wie an dessen Gehilfen und an die zur Anwendung gelangenden Meßgeräte. Die neuzeitlichen Tunnel werden von beiden Seiten her gleichzeitig in das Gebirge vorgetrieben, und es muß daher Vorsorge getroffen werden, daß die einander entgegenstrebenden Arbeiterscharen sich im Innern des Berges treffen und nicht aneinander vorbeigehen. Zu diesem Zwecke wird der betreffende Gebirgsabschnitt mit einem sog. Triangulationsnetz überzogen. Die Ecken der dieses Triangulationsnetz bildenden Dreiecke liegen auf Bergspitzen, und es werden nun diejenigen Winkel, unter denen diese mit sichtbaren Signalen ausgestatteten Bergspitzen zueinander stehen, gemessen und festgestellt. Hat man den Gebirgsstock auf diese Weise gleichsam in ein Netz von Dreiecken eingesponnen, so ist nur noch erforderlich, die Winkel zwischen den Tunnelmundlöchern und den von diesen aus sichtbaren Bergspitzen zu messen. Nunmehr kann die Mittelachse des Tunnels über das Gebirge hinweg durch Signalstangen festgelegt werden. Um sicher zu sein, daß sich die Arbeiten im Innern des Berges genau unterhalb dieser über das Gebirge hin festgelegten Linie bewegen, wird letztere über beide Tunnelmündungen hinaus verlängert, und in dieser Verlängerung der Tunnelachse werden Beobachtungsposten aufgestellt, von denen aus man mittels scharfer Fernrohre die im Berge fortschreitende Tunnelöffnung und die über das Gebirge festgelegte Tunnelachse beobachten und gegenseitig verfolgen kann. Um dies zu ermöglichen, werden in der Mittellinie des fortschreitenden Tunnels scharf leuchtende Lichter angebracht. Stellt man ein Fernrohr auf die über das Gebirge gelegte Achse ein und dreht man dasselbe alsdann in senkrechter Richtung so tief abwärts, daß man in das Innere des Tunnels hineinblickt, so müssen die hier angebrachten Lichter in derselben senkrechten Ebene liegend erscheinen wie jene Achse. Ist dies nicht der Fall, so muß der Vortrieb des Tunnels entsprechend geändert werden. Die Arbeiten des Professor Rosenmund wurden stark durch Luftspiegelungen gestört, die von Temperaturunterschieden der Tunnelluft herrührten. Sie gelangten aber zu einer so genauen Durchführung, daß die beiden Tunnelachsen, als sie am 25. Februar 1905 sich begegneten, nur um 20,2 cm in der Wagerechten und um 8,7 cm in der Senkrechten voneinander abwichen.
Читать дальшеИнтервал:
Закладка:
Похожие книги на «Schöpfungen der Ingenieurtechnik der Neuzeit»
Представляем Вашему вниманию похожие книги на «Schöpfungen der Ingenieurtechnik der Neuzeit» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.
Обсуждение, отзывы о книге «Schöpfungen der Ingenieurtechnik der Neuzeit» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.