Feynmann - Feynmann 9

Здесь есть возможность читать онлайн «Feynmann - Feynmann 9» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Старинная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Feynmann 9: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Feynmann 9»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Feynmann 9 — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Feynmann 9», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Далее, ясно, что если оказывается верным, что оператор Q ^ в какой-то момент времени просто меняет фазу состояния (ска­жем, в момент t =0), то это будет верно всегда. Иначе говоря, если состояние |y 1> переходит за время t в состояние |y 2>:

и если симметрия физической картины такова что то верно и то что - фото 234

и если симметрия физической картины такова, что

то верно и то что Это ясно ведь Верхние равенства следуют из - фото 235

то верно и то, что

Это ясно ведь Верхние равенства следуют из 1513 и 1510 для - фото 236

Это ясно, ведь

Верхние равенства следуют из 1513 и 1510 для симметричной системы - фото 237

[Верхние равенства следуют из (15.13) и (15.10) для симметричной системы, нижние — из (15.14) и из того, что всякое число, скажем е i d , коммутирует с оператором.]

Итак, при некоторых симметриях то, что верно сначала, вер­но всегда. Но разве это не закон сохранения? Да! Он утверждает, что если вы взглянете на исходное состояние и, проделав где-то в стороне небольшой подсчет, откроете, что операция, которая является операцией симметрии для системы, приводит только к умножению на некоторый фазовый множитель, то вы будете уверены, что это же свойство будет выполнено для конечного состояния — та же операция умножит и конечное состояние на тот же фазовый множитель. Это будет верно всегда, даже если вы ничего не знаете о том внутреннем механизме мира, который изменяет систему от начального состояния к конечному. Даже если вы не позаботились вглядеться в детали того, каким именно способом система переходит от одного состояния к другому, вы все равно имеете право говорить, что если вещь вначале находилась в состоянии с определенным характером симметрии и если гамильтониан этой вещи симметричен отно­сительно этой операции симметрии, тогда тот же характер симметрии останется у состояния на вечные времена. Это основа всех законов сохранения квантовой механики.

Рассмотрим частный пример. Возьмем опять оператор Р ^ . Сперва, правда, немножко изменим определение операции Р. Пусть Р ^ будет не просто зеркальным отражением, потому что оно требует определения плоскости, в которой поставлено зер­кало. Существует особый вид отражения, который указания плоскости не требует. Переопределим операцию Р ^ таким обра­зом: сперва вы отражаете в зеркале, находящемся в плоскости z, так что z переходит в - z , x остается х, а у остается у; затем вы поворачиваете систему на угол 180° вокруг оси z, так что х переходит в - х, а у в - у. Все вместе называется инверсией, обращением координат. Каждая точка проецируется через начало координат в диаметрально противоположное положение. Все координаты всего на свете меняют знак. Эту операцию мы, как и прежде, будем обозначать символом Р. Она изображена на фиг. 15.4 и немного удобнее, чем простая операция отражения, потому что не нужно указывать, в какой координатной плоско­сти происходит отражение, достаточно лишь указать точ­ку, являющуюся центром симметрии.

Фиг 154 Операция инверсии Р То что находится в точке A х у z - фото 238

Фиг. 15.4. Операция инверсии Р ^ . То, что находится в точке A (х, у, z), переходит в точку

А' ( - х, - у, - z ).

Теперь предположим, что у sac есть состояние | y 0> , которое при операции инверсии переходит в е i d|y 0>, т. е.

Сделаем теперь новую инверсию После двух инверсий мы вернемся к тому с чего - фото 239

Сделаем теперь новую инверсию. После двух инверсий мы вернемся к тому, с чего начали: ничего не изменится. Должно получиться

Но Отсюда следует что е i d 21 Значит если оператор инверсии - фото 240

Но

Отсюда следует что е i d 21 Значит если оператор инверсии является - фото 241

Отсюда следует, что (е i d ) 2=1. Значит, если оператор инверсии является операцией симметрии для какого-то состояния, то У d могут быть только две возможности:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Feynmann 9»

Представляем Вашему вниманию похожие книги на «Feynmann 9» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Feynmann 9»

Обсуждение, отзывы о книге «Feynmann 9» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.