Feynmann - Feynmann 9

Здесь есть возможность читать онлайн «Feynmann - Feynmann 9» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Старинная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Feynmann 9: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Feynmann 9»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Feynmann 9 — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Feynmann 9», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Теперь мы хотели бы кое на что обратить ваше внимание. Предположим, что физика всей системы молекулярного иона водорода сама по себе симметрична. Этого могло бы и не быть — это зависит, например, от того, что находится с нею рядом. Но если система симметрична, то с необходимостью должна быть справедлива следующая идея. Предположим, что вначале, при t = 0 , система находится в состоянии | 1 >, а через промежуток времени t мы обнаруживаем, что система оказалась в более сложном положении — в какой-то линейной комбинации обоих базисных состояний. Вспомните, что в гл. 6 (вып. 8) мы привыкли представлять «эволюцию во времени» умножением на оператор U ^. Это означает, что система через мгновение (скажем для опреде­ленности, через 15 сек) окажется в каком-то ином состоянии.

Например, это состояние на Ц 2/ 3может состоять из состояния | 1 > и на i Ц 1/ 3из состояния | 2 >, и мы бы написали

|y на 15-й секунде> = 154 Теперь спросим что же произойдет если вначале мы запустим систему в - фото 222.(15.4)

Теперь спросим: что же произойдет, если вначале мы запустим систему в симметричном состоянии | 2 > и при тех же условиях подождем 15 сек? Ясно, что если мир симметричен (что мы и предполагаем), то обязательно получится состояние, симметрич­ное с (15.4):

|y на 15-й секунде>= Те же идеи схематично изображены на фиг 152 Фиг 152 Если в - фото 223

Те же идеи схематично изображены на фиг. 15.2.

Фиг 152 Если в симметричной системе чистое состояние 1 развивается во - фото 224

Фиг. 15.2. Если в симметричной системе чистое состояние |1 > развивается во вре­мени так, как показано в части (а), то чистое состояние |2 > будет во времени развиваться так, как показано в части (б).

Итак, если физика системы симметрична относительно некоторой плоскости и мы рассчитали поведение того или иного состояния, то нам также известно поведение состояния, которое получилось бы после отражения исходного состояния в плоскости симметрии.

То же самое можно высказать чуть более общо, т. е. чуть более отвлеченно. Пусть Q ^ любая из множества операций, которые вы можете произвести над системой, не меняя физики. К примеру, за Q ^ мы можем принять операцию отражения в пло­скости, расположенной посредине между двумя атомами моле­кулы водорода. Или в системе с двумя электронами можно было бы под Q ^ подразумевать операцию обмена двумя электронами. Третьей возможностью явилась бы в сферически симметричной системе операция поворота всей системы на конечный угол вокруг некоторой оси; от этого физика не изменится. Конечно, в каждом отдельном случае мы бы обозначали Q ^ по-своему. В частности, через R ^ y (q) мы обычно будем обозначать операцию «поверни систему вокруг оси у на угол q». Под Q ^ мы просто понимаем один из названных операторов или любой другой, который оставляет всю физическую ситуацию неизменной.

Оператор Q ^ мы будем называть оператором симметрии для системы.

Вот вам еще примеры операторов симметрии. Если у нас имеется атом, а внешнее магнитное или внешнее электрическое поле отсутствует, то после поворота системы координат вокруг любой оси физическая система остается той же самой. Опять-таки молекула аммиака симметрична относительно отражения в пло­скости, параллельной той, в которой лежат три атома водорода (пока нет электрического поля). Если есть электрическое поле, то при отражении надо было бы обратить и поле, а это меняет всю физическую задачу. Но пока внешнего поля нет, молекула симметрична.

Теперь рассмотрим общий случай. Положим, мы начали с состояния |y 1>, а через некоторое время или под влиянием других физических условий оно превратилось в состояние |y 2>. Напишем

Посмотрите на формулу 154 Теперь вообразите что над всей системой мы - фото 225

[Посмотрите на формулу (15.4).] Теперь вообразите, что над всей системой мы проводим операцию Q ^. Состояние |y 1> преобра­зится в состояние |y' 1>, которое также записывается в виде Q ^ | y 1> . А состояние |y 2> превращается в |y' 2>= Q ^|y 2>. И вот, если физика симметрична относительно Q ^ (не забывайте про это, если это отнюдь не общее свойство системы), тогда, подождав в тех же условиях то же время, мы должны получить

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Feynmann 9»

Представляем Вашему вниманию похожие книги на «Feynmann 9» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Feynmann 9»

Обсуждение, отзывы о книге «Feynmann 9» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x