Глав a 15
СИММЕТРИЯ И ЗАКОНЫ СОХРАНЕНИЯ
§ 1. Симметрия
§ 2. Симметрия и ее сохранение
§ 3. Законы сохранения
§ 4. Поляризованный свет
§ 5. Распад Λ °
§ 6. Сводка матриц поворота
Повторить: гл. 52 (вып. 4} «Симметрия законов физики»
§ 1. Симметрия
В классической физике немало величин (таких, как импульс, энергия и момент количества движения) сохраняется. Теоремы о сохранении соответствующих величин существуют и в квантовой механике. Самое прекрасное в квантовой механике это то, что теоремы сохранения в определенном смысле удается в ней вывести из чего-то другого; в классической же механике они сами практически являются исходными для других законов. (Можно, правда, и в классической механике поступать так же, как в квантовой, но это удается только на очень высоком уровне.) В квантовой механике, однако, законы сохранения очень тесно связаны с принципом суперпозиции амплитуд и с симметрией физических систем относительно различных изменений. Это и есть тема настоящей лекции. Хотя идеи эти мы будем применять главным образом к сохранению момента количества движения, но существенно здесь то, что все теоремы о сохранении каких угодно величин всегда связаны — в квантовой механике — с симметриями системы.
Начнем поэтому с изучения вопроса о симметриях систем. Очень простым примером служат молекулярные ионы водорода (впрочем, в равной степени подошли бы и молекулы аммиака), у которых имеется по два состояния. У молекулярного иона водорода за одно базисное состояние мы принимали такое состояние, когда электрон расположен возле протона № 1, а за другое базисное состояние то, в котором электрон располагался возле протона № 2. Эти два состояния (мы их называли | 1 > и | 2 >) мы снова показываем на фиг. 15.1, а.

Фиг. 15.1. Если состояния |1 > и |2 > отразить в плоскости Р—Р, они перейдут соответственно в состояния |2> и | 1 >.
И вот, поскольку оба ядра в точности одинаковы, в этой физической системе имеется определенная симметрия. Иначе сказать, если бы нам пришлось отразить систему в плоскости, поставленной посредине между двумя протонами (имеется в виду, если бы все находящееся с одной стороны плоскости симметрично перешло на другую сторону), то возникла бы картина, представленная на фиг. 15.1, б. А коль скоро протоны тождественны, операция отражения переводит | 1 > в | 2 >, а | 2 > в | 1 >. Обозначим эту операцию отражения Р ^ и напишем

Значит, наше Р ^ — это оператор, в том смысле, что он «что-то делает» с состоянием, чтобы вышло новое состояние. Интересно здесь то, что Р ^ , действуя на любое состояние, создает какое-то другое состояние системы.
Далее, у Р ^ , как у всякого другого оператора, с которыми мы встречались, есть матричные элементы, которые можно определить с помощью обычных очевидных обозначений. Именно

суть матричные элементы, которые получаются, если Р ^ | 1 > и
Р ^ |2 > умножить слева на < 1 | . Согласно уравнению (15.1), они равны

Таким же путем можно получить и Р 21, и Р 22. Матрица Р ^ относительно базисной системы| 1 > и | 2 > есть

Мы снова убеждаемся, что слова оператор и матрица в квантовой механике практически взаимозаменяемы. Есть, конечно, легкие технические различия, как между словами «числительное» и «число», но мы не такие педанты, чтобы забивать себе этим голову. Так что будем именовать Р ^ то оператором, то матрицей, независимо от того, определяет ли оно операцию или реально использовано для получения численной матрицы.
Читать дальше