Feynmann - Feynmann 9

Здесь есть возможность читать онлайн «Feynmann - Feynmann 9» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Старинная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Feynmann 9: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Feynmann 9»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Feynmann 9 — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Feynmann 9», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Мы не будем пользоваться этими формулами а прямо будем работать с 1452 - фото 200

Мы не будем пользоваться этими формулами, а прямо будем рабо­тать с (14.52).]

Если теперь взять выражение (14.52) и подставить в (14.50) вместо интеграла, то для y( х ) = < х |y> получится дифферен­циальное уравнение

Совершенно очевидно что надлежит поставить вместо 1453 если нас - фото 201

Совершенно очевидно, что надлежит поставить вместо (14.53),

если нас интересует трехмерное движение. Надо только d 2 / dx 2

заменить на

а V х заменить на V x у z Для электрона движущегося в поле с - фото 202

а V ( х ) заменить на V ( x , у, z ) . Для электрона, движущегося в поле с потенциалом V (х, у, z), амплитуда y (х, у, z ) удовлетво­ряет дифференциальному уравнению

Называется оно уравнением Шредингера и было первым известным - фото 203

Называется оно уравнением Шредингера и было первым извест­ным квантовомеханическим уравнением. Его написал Шредин­гер, прежде чем было открыто любое другое описанное в этом томе уравнение.

Хотя мы здесь пришли к нему совсем иным путем, но появле­ние этого уравнения в 1926 г., когда Шредингер впервые его написал, явилось великим историческим моментом, отметившим рождение квантовомеханического описания материи. Многие годы внутренняя атомная структура вещества была великой тайной. Никто не был в состоянии понять, что скрепляет вещест­во, отчего существует химическая связь, и, особенно, как атомам удается быть устойчивыми. Хотя Бор и смог дать описание внут­реннего движения электрона в атоме водорода, которое, каза­лось бы, объясняло наблюдаемый спектр лучей, испускаемых этим атомом, но причина, отчего электроны движутся именно так, оставалась тайной. Шредингер, открыв истинные уравне­ния движения электронов в масштабах атома, снабдил нас тео­рией, которая позволила рассчитать атомные явления количест­венно, точно и подробно. В принципе его уравнение способно объяснить все атомные явления, кроме тех, которые связаны с магнетизмом и теорией относительности. Оно объясняет уровни энергии атома и все, что касается химической связи. Но, ко­нечно, это объяснение только в принципе. Математика вскоре становится столь сложной, что точно решить удается только простейшие задачи. Одни лишь атомы водорода и гелия были рассчитаны с высокой точностью. Однако путем различных при­ближений, порой весьма сомнительных, можно многое понять и в более сложных атомах и в химической связи молекул. Некоторые из этих приближений были показаны в предыдущих главах.

Уравнение Шредингера в том виде, в каком мы его записали, не учитывает каких-либо магнитных эффектов. Их, правда, можно приближенно принять во внимание, добавив в уравнение еще другие члены. Но, как мы убедились раньше, магнетизм — это эффект существенно релятивистский, так что правильное опи­сание движения электрона в произвольном электромагнитном поле можно обсуждать только в рамках надлежащего релятиви­стского уравнения. Правильное релятивистское уравнение для движения электрона было открыто Дираком через год после того, как Шредингер придумал свое уравнение; оно имеет со­вершенно другой вид. Мы его не успеем здесь изучить.

Прежде чем перейти к рассмотрению некоторых следствий из уравнения Шредингера, хотелось бы продемонстрировать, как оно выглядит для системы многих частиц. Мы не будем им пользоваться, а просто хотим показать вам его, чтобы подчерк­нуть, что волновая функция y не просто обычная волна в про­странстве, а функция многих переменных. Если частиц много, уравнение превращается в

Потенциальная функция V это то что классически соответствует полной - фото 204

Потенциальная функция V — это то, что классически соответст­вует полной потенциальной энергии всех частиц. Если на ча­стицы не действуют внешние силы, то функция V есть попросту электростатическая энергия взаимодействия всех частиц. Иначе говоря, если заряд i -й частицы равен Z i q e , то функция V просто равна

6 Квантованные уровни энергии В одной из последующих глав мы на - фото 205

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Feynmann 9»

Представляем Вашему вниманию похожие книги на «Feynmann 9» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Feynmann 9»

Обсуждение, отзывы о книге «Feynmann 9» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x