Feynmann - Feynmann 9

Здесь есть возможность читать онлайн «Feynmann - Feynmann 9» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Старинная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Feynmann 9: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Feynmann 9»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Feynmann 9 — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Feynmann 9», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

и начнем.

В гл. 6 мы описали на языке гамильтониана Н ij ., как состоя­ния меняются во времени. Мы видели, что временная вариация различных амплитуд дается матричным уравнением

Это уравнение говорит что изменение во времени каждой из амплитуд С i - фото 192

Это уравнение говорит, что изменение во времени каждой из амплитуд С i пропорционально сумме всех прочих амплитуд С j

с коэффициентами Н ij .

Как должно выглядеть (14.49) при континууме базисных состояний | x >? Вспомним сперва, что (14.49) можно также запи­сать в виде

Теперь ясно что делать Для x представления следует писать Сумма по - фото 193

Теперь ясно, что делать. Для x -представления следует писать

Сумма по базисным состояниям j заменяется интегралом по х Поскольку х - фото 194

Сумма по базисным состояниям | j > заменяется интегралом по х'. Поскольку < х | Н ^ | х ' > должна быть какой-то функцией от x и х ', запишем ее как Н (х, х'), что соответствует Н if в (14.49). Тогда (14.50) это то же самое, что

где Согласно 1451 быстрота изменения y в точке х зависела бы от - фото 195

где

Согласно 1451 быстрота изменения y в точке х зависела бы от значений y во - фото 196

Согласно (14.51), быстрота изменения y в точке х зависела бы от значений y во всех других точках х '; множитель Н(х, х') — это амплитуда (в единицу времени) того, что электрон перепры­гнет из х' в x . Оказывается, однако, что в природе эта амплитуда всюду, кроме точек х ' , очень близких к х, равна нулю. Это озна­чает, как мы видели на примере цепочки атомов в начале главы [см. (14.12)], что правая часть (14.51) может быть полностью выражена только через y и ее производные по z в точке х.

Для частицы, которая свободно движется в пространстве, не подвергаясь действию каких-либо сил и возмущений, пра­вильный физический закон таков:

Откуда это получается Это невозможно вывести из чеголибо нам уже известного - фото 197

Откуда это получается? Это невозможно вывести из чего-либо нам уже известного. Это рождено в голове Шредингера, это вы­думано им в битве за понимание экспериментальных наблюдений реального мира. Может быть, какой-то ключ к тому, почему так должно быть, вам дадут размышления по поводу нашего вывода уравнения (14.12), которое проистекло из рассмотрения распро­странения электрона в кристалле.

Конечно, от свободных частиц проку мало. Что будет, если к частице приложить силы? Что ж, если действующая на частицу сила может быть описана с помощью скалярного потенциала V ( х ) (что означает, что речь идет не о магнитных силах, а об электрических) и если мы ограничимся низкими энергиями, чтобы иметь право пренебрегать теми сложностями, которые возникают при релятивистском движении, то гамильтониан, который укладывается в реальный мир, таков:

Опятьтаки некоторый ключ к происхождению этого уравнения вы получите если - фото 198

Опять-таки некоторый ключ к происхождению этого уравнения вы получите, если вернетесь к движению электрона в кристалле и посмотрите, как надо изменить уравнения, если энергия электрона медленно меняется от атома к атому, как если бы к кристаллу было приложено электрическое поле. Тогда член Е 0в (14.7) будет медленно меняться в зависимости от места и будет соответствовать новому слагаемому, появившемуся в (14.52). [Вас может удивить, отчего мы сразу перешли от (14.51) к (14.52), а не дали правильного выражения для амплитуды Н(х, х')= < х | Н ^ ' > . Да потому, что Н (х , х') можно написать только с помощью необычных алгебраических функций, а инте­грал в правой части (14.51) выражается через привычные вещи. Если вам это в самом деле интересно, то вот смотрите: Н (х, х') можно записать так:

где d означает вторую производную 6функции Эту довольно странную функцию - фото 199

где d'' означает вторую производную 6-функции. Эту довольно странную функцию можно заменить чуть более удобным и пол­ностью ей равнозначным алгебраическим выражением

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Feynmann 9»

Представляем Вашему вниманию похожие книги на «Feynmann 9» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Feynmann 9»

Обсуждение, отзывы о книге «Feynmann 9» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x