Другими словами, если уравнения ферромагнетизма записать как

то они будут похожи на уравнения электростатики.
В прошлом это чисто алгебраическое соответствие доставило нам некоторые неприятности. Многие начинали думать, что именно Ни есть магнитное поле. Но, как мы уже убедились, физически фундаментальными полями являются Еи В, а поле Н— понятие производное. Таким образом, хотя уравнения и аналогичны, физика их совершенно различна. Однако это не может заставить нас отказаться от принципа, что одинаковые уравнения имеют одинаковые решения.
Теперь можно воспользоваться нашими предыдущими результатами о полях внутри полости различной формы в диэлектриках, которые приведены на фиг. 36.1, для нахождения поля Н. Зная Н, можно определить и В. Например, поле Нвнутри иглообразной полости, параллельной М(согласно результату, приведенному в § 1), будет тем же самым, что и поле Нвнутри материала:

Но поскольку в нашей полости Мравна нулю, то мы получаем

С другой стороны, для дискообразной полости, перпендикулярной М,

что в нашем случае превращается в

или в величинах В:

Наконец, для сферической полости аналогия с уравнением (36.3) дала бы

Результаты для магнитного поля, как видите, отличаются от тех, которые мы имели для электрического поля.
Конечно, их можно получить и более физически, непосредственно используя уравнения Максвелла. Например, уравнение (36.34) непосредственно следует из уравнения С·B=0. (Возьмите гауссову поверхность, которая наполовину находится в материале, а наполовину — вне его.) Подобным же образом вы можете получить уравнение (36.33), воспользовавшись контурным интегралом по пути, который туда идет по полости, а назад возвращается через материал. Физически поле в полости уменьшается благодаря поверхностным токам, определяемым как V X М. На вашу долю остается показать, что уравнение (36.35) можно получить, рассматривая эффекты поверхностных токов на границе сферической полости.
При нахождении равновесной намагниченности из уравнения (36.29) удобнее, оказывается, иметь дело с Н, поэтому мы пишем

В приближении сферической полости коэффициент Я следует взять равным 1 / 3 , но, как вы увидите позже, нам придется пользоваться несколько другим его значением, а пока оставим его как подгоночный параметр. Кроме того, все поля мы возьмем в одном и том же направлении, чтобы нам не нужно было заботиться о направлении векторов. Если бы теперь мы подставили уравнение (36.36) в (36.29), то получили бы уравнение, которое связывает намагниченность М с намагничивающим полем Н:

Однако это уравнение невозможно решить точно, так что мы будем делать это графически.
Сформулируем задачу в более общей форме, записывая уравнение (36.29) в виде

где М нас— намагниченность насыщения, т. е. N m , a x — величина m B a / kT . Зависимость М/М нас от х показана на фиг. 36.13 (кривая а).
Читать дальше