* В системе, которой пользуется здесь автор, В=Н+1 / e 0 c 2 М, но
D = e 0 E + P . В старой, доброй системе единиц писали В= m 0 Н=( 1/ e 0 c 2 )Н и
D = e 0 Е или В=(Н+4 p М) и D =Е+4 p Р. Надо быть очень внимательным, когда формулы для магнетиков пишутся по аналогии с формулами для диэлектриков (ср. § 6).— Прим. ред.
* Или, если хотите, ток I на каждой грани может быть поровну; распределен на кубиках с двух сторон.
* Если бы все «другие» заряды находились на проводниках, то r др было бы тем же самым, что и r своб в гл. 10 (вып. 5).
Глава 37
МАГНИТНЫЕ МАТЕРИАЛЫ
§ 1.Сущность ферромагнетизма
§ 2.Термодинамические свойства
§ 3. Петля гистерезиса
§ 4.Ферромагнитные материалы
§ 5.Необычные магнитные материалы
§ 1. Сущность ферромагнетизма
В этой главе мы поговорим об особенностях и поведении ферромагнетиков и некоторых других необычных магнитных материалов. Но перед тем как приступить к этой теме, я сделаю маленький обзор некоторых вопросов общей теории магнитов, которые мы изучали в предыдущей главе.
Мы сначала представили себе «магнитные» токи, текущие внутри материала и порождающие магнетизм, а затем стали их описывать через объемную плотность токов j м ar= СX M. Заметьте, что эти токи нереальные. Даже когда намагниченность вещества однородна, токи в нем на самом деле не исчезают полностью: круговые токи электрона в одном атоме и круговые токи электрона в другом атоме, перекрываясь, не дают в сумме точно нуль. Даже внутри каждого отдельного атома распределение магнетизма не очень гладкое. В атоме железа, например, намагниченность распределена более или менее по сферической поверхности не слишком близко к ядру, но и не слишком далеко от него. Таким образом, магнетизм в веществе — вещь довольно сложная в своих деталях и весьма нерегулярная. Но сейчас мы должны об этих сложностях забыть и рассматривать явление, пользуясь более грубой усредненной моделью. Только тогда становится верным утверждение о равенстве нулю среднего тока при М=0 в ограниченной внутренней области, большой по сравнению с размерами атома. Таким образом, под магнитным моментом единицы объема (намагниченностью) и под j маги т. п. на нашем теперешнем уровне рассмотрения мы понимаем среднее по областям, большим по сравнению с пространством, занимаемым отдельным атомом.
В предыдущей главе мы обнаружили, что ферромагнитные материалы обладают следующим интересным свойством: при температурах выше некоторой их магнитные свойства проявляются слабо и лишь ниже этой температуры они становятся сильными магнетиками. Этот факт легко продемонстрировать. Кусок никелевого провода при комнатной температуре притягивается магнитом. Но если мы его нагреем в пламени газовой горелки выше температуры Кюри, то он станет практически немагнитным и не будет притягиваться к магниту, даже если мы поднесем его совсем близко. Если же оставить его остывать возле магнита, то в тот момент, когда его температура упадет ниже критической, он внезапно снова притянется к магниту!
В общей теории магнетизма, которой мы пользуемся, предполагается, что за намагниченность ответствен спин электрона. Спин электрона равен 1/ 2и сопровождается магнитным моментом, равным одному магнетону Бора: (m=m b = q e h /2 m . Спин электрона может быть направлен либо вверх, либо вниз. Поскольку заряд электрона отрицателен, то магнитный момент его направлен вниз, когда спин направлен вверх, и направлен вверх, когда спин направлен вниз. В соответствии с нашим обычным соглашением магнитный момент электрона (А — число отрицательное. Мы нашли, что потенциальная энергия магнитного диполя в заданном приложенном поле Вравна— m· B. Энергия вращающегося электрона зависит также и от расположения соседних спинов. Если в железе момент соседнего атома направлен вверх, то момент следующего атома имеет сильную тенденцию тоже направиться вверх. Именно это делает железо, кобальт и никель такими сильными магнетиками — все моменты атомов в них стремятся быть параллельными. И вот первый вопрос, который мы должны обсудить, — почему так происходит?
Читать дальше