Feynmann - Feynmann 7

Здесь есть возможность читать онлайн «Feynmann - Feynmann 7» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Старинная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Feynmann 7: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Feynmann 7»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Feynmann 7 — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Feynmann 7», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Хотя мы обсуждали, как происходит нарушение закона Гука, но, по-видимому, наиболее удивительно все же не нару­шение этого закона при больших деформациях, а его универ­сальность. Некоторое понятие о том, почему так происходит, вы можете получить, рассматривая энергию деформации материала. Утверждение о том, что напряжение пропорционально деформации, равносильно утверждению, что энергия деформа­ции изменяется как квадрат напряжения. Предположим, что мы скрутили стержень на малый угол q. Если справедлив закон Гука, то энергия деформации должна быть пропорциональна квадрату q. Предположим, что энергия является некоторой произвольной функцией угла. Мы можем записать ее в виде разложения Тэйлора около нуля:

U (q) = U (0)+ U ' (0)q + 1/ 2U’’(0)q 2+ 1/ 6U'''(q)q 3+ -.. . (39.40)

Момент силы t представляет производную U по углу, поэтому

t(q)=U'(0)+U"(0) q+ 1/ 2U’’’(0)q 2+ ... . (39.41)

Если теперь отсчитывать угол от положения равновесия, то первое слагаемое будет равно нулю. Таким образом, первое оставшееся слагаемое пропорционально q и при достаточно малых углах оно будет превосходить слагаемое с q 2. [На самом деле, внутренне материалы в достаточной мере симметричны, так что t(q)=-t(-q); слагаемое с q 2оказывается нулем, а отклонение от линейности происходит только из-за слагаемого с q 3. Однако нет причин, по которым это было бы верно для растяжения и сжатия.] Единственно, что мы не объяснили,— почему материалы обычно разрушаются вскоре после того, как становятся существенными члены высшего порядка.

§ 5. Вычисление упругих постоянных

Последний вопрос в теории упругости, который я разберу,— это попытка вычислить упругие постоянные материала, исходя из некоторых свойств атомов, составляющих этот материал. Мы рассмотрим простой случай ионного кубического кристалла типа хлористого натрия. Размер или форма деформированного кристалла изменяются. Такие изменения приводят к увеличе­нию потенциальной энергии кристалла. Для вычисления изме­нения энергии деформации следует знать, куда идет каждый атом. Чтобы сделать полную энергию как можно меньше, атомы в решетке сложных кристаллов перегруппировываются весьма сложным образом. Это довольно сильно затрудняет вычисление энергии деформации. Но понять, что получается в случае про­стого кубического кристалла, все-таки можно. Возмущения внутри кристалла будут геометрически подобны возмущениям его внешних граней.

Упругие постоянные кубического кристалла можно вычис­лить следующим образом. Прежде всего мы предположим нали­чие некоего закона взаимодействия между каждой парой атомов в кристалле. Затем вычислим изменение внутренней энергии кристалла при отклонении от равновесной формы. Это даст нам соотношения между энергией и деформацией, которая квадра­тична по деформациям. Сравнивая энергию, полученную таким способом, с уравнением (39.13), можно идентифицировать коэф­фициенты при каждом слагаемом с упругими постоянными C ijkl .

В нашем примере мы будем предполагать следующий простой закон взаимодействия: между соседними атомами действуют центральные силы, имея в виду, что они действуют по линии, соединяющей два соседних атома. Мы ожидаем, что силы в ион­ных кристаллах должны быть именно такого типа, ибо в основе их лежит простое кулоновское взаимодействие. (При ковалентной связи силы обычно более сложны, ибо они приводят и к бо­ковому давлению на соседние атомы; но нам все эти усложнения ни к чему.) Кроме того, мы собираемся учесть только силу взаимодействия каждого атома с ближайшим к не­му и следующими побли­зости соседями. Другими словами, мы будем делать приближение, в котором пренебрежем силами меж­ду далекими атомами. На фиг. 39.10,а показаны си­лы в плоскости ху, которые мы будем учитывать. Сле­дует еще учесть соответ­ствующие силы в плоскос­тях yz и zx .

Поскольку нас инте­ресуют только упругие постоянные, которые опи­сывают малые деформации, и, следовательно, в выражении для энергии нам нужны только слагаемые, квадратич­ные по деформациям, то можно считать, что силы между каждой парой атомов изменяются с перемещением линейно.

Фиг 3910 Принимаемые нами в расчет межатомные силы а и модель в которой - фото 418

Фиг. 39.10. Принимаемые нами в расчет межатомные силы (а) и модель, в которой атомы связаны пружинками (б).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Feynmann 7»

Представляем Вашему вниманию похожие книги на «Feynmann 7» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Feynmann 7»

Обсуждение, отзывы о книге «Feynmann 7» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x