Feynmann - Feynmann 6

Здесь есть возможность читать онлайн «Feynmann - Feynmann 6» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Старинная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Feynmann 6: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Feynmann 6»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Feynmann 6 — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Feynmann 6», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(18.19)

Мы уже решили два из уравнений Максвелла и нашли, что для описания электромагнитных полей Е и В нужны четыре потенциальные функции: скалярный потенциал j и векторный потенциал А, который, разумеется, представляет три функции.

Итак А определяет часть Е так же как и В Что же произойдет когда мы - фото 195

Итак, А определяет часть Е, так же как и В. Что же про­изойдет, когда мы заменим А на A'=A+Сy? В общем, Е долж­но было бы измениться, если не принять особых мер. Мы можем, однако, допустить, что А изменяется так, чтобы не влиять на поля Е и В (т. е. не меняя физики), если будем всегда изменять А и j вместе по правилам

(18.20)

Тогда ни В, ни Е, полученные из уравнения (18.19), не меня­ются.

Раньше мы выбирали С·А=0, чтобы как-то упростить уравнения статики. Теперь мы не собираемся так поступать; мы хотим сделать другой выбор. Но подождите немного, прежде чем мы скажем, какой это выбор, потому что позднее станет ясно, почему вообще делается выбор.

Сейчас мы вернемся к двум оставшимся уравнениям Максвел­ла, которые свяжут потенциалы и источники r и j. Раз мы можем определить А и j из токов и зарядов, то можно всегда получить Е и В из уравнений (18.16) и (18.19) и мы будем иметь другую форму уравнений Максвелла.

Начнем с подстановки уравнения (18.19) в С·E=r/e 0; получаем

это можно записать еще в виде 1821 Таково первое уравнение - фото 196

это можно записать еще в виде

1821 Таково первое уравнение связывающее j и А с источниками Наше - фото 197

(18.21)

Таково первое уравнение связывающее j и А с источниками Наше последнее - фото 198

Таково первое уравнение, связывающее j и А с источниками, Наше последнее уравнение будет самым трудным. Мы начнем с того, что перепишем четвертое уравнение Максвелла:

а затем выразим В и Е через потенциалы, используя уравнения (18.16) и (18.19):

Первыйчлен можно переписать используя алгебраическое тождество Vx СXA С - фото 199

Feynmann 6 - изображение 200

Первыйчлен можно переписать, используя алгебраическое тождество Vx (СXA) = С (С·A)-С 2A; мы получаем

(18.22)

Не очень-то оно простое!

Feynmann 6 - изображение 201

К счастью, теперь мы можем использовать нашу свободу в произвольном выборе дивергенции А. Сейчас мы собираемся сделать такой выбор, чтобы уравнения для А и для j разделились, но имели одну и ту же форму. Мы можем сделать это, выбирая

(18.23)

Когда мы поступаем так то второе и третье слагаемые в уравнении 1822 - фото 202

Когда мы поступаем так, то второе и третье слагаемые в уравнении (18.22) погашаются, и оно становится много проще:

(18.24)

И наше уравнение 1821 для j принимает такую же форму 1825 Какие - фото 203

И. наше уравнение (18.21) для j принимает такую же форму:

(18.25)

Какие красивые уравнения! Они великолепны прежде всего потому, что хорошо разделились — с плотностью заряда стоит j, а с током стоит А. Далее, хотя левая сторона выглядит не­много нелепо — лапласиан вместе с ( d / dt ) 2 , когда мы раскроем ее, то обнаружим

1826 Это уравнение имеет приятную симметрию по х у z t здесь 1с 2 - фото 204

(18.26)

Это уравнение имеет приятную симметрию по х, у, z , t ; здесь (-1/с 2) нужно, конечно, потому, что время и координаты раз­личаются; у них разные единицы.

Уравнения Максвелла привели нас к нового типа уравнению для потенциалов j и А, но с одной и той же математической формой для всех четырех функций j, А х , А у и А г . Раз мы научились решать эти уравнения, то можем получить В и Е изСXЕ и-Сj- dA / dt . Мы приходим к другой форме электро­магнитных законов, в точности эквивалентной уравнениям Максвелла; с ними во многих случаях обращаться гораздо проще.

Фактически мы уже решали уравнение, весьма похожее на (18.26). Когда мы изучали звук в гл. 47 (вып. 4), мы имели уравнение в форме

Feynmann 6 - изображение 205

и видели, что оно описывает распространение волн в x-направлении со скоростью с. Уравнение (18.26) это соответствующее волновое уравнение для трех измерений. Поэтому в области, где больше нет зарядов и токов, решение этих уравнений не означает, что j и А — нули. (Хотя на самом деле нулевое решение есть одно из возможных решений.) Имеются решения, представляющие некоторую совокупность j и А, которые ме­няются со временем, но всегда движутся со скоростью с. Поля передвигаются вперед через свободное пространство, как в нашем примере в начале главы.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Feynmann 6»

Представляем Вашему вниманию похожие книги на «Feynmann 6» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Feynmann 6»

Обсуждение, отзывы о книге «Feynmann 6» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.