Feynmann - Feynmann 6

Здесь есть возможность читать онлайн «Feynmann - Feynmann 6» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Старинная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Feynmann 6: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Feynmann 6»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Feynmann 6 — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Feynmann 6», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Фиг 185 То же что на фиг 183 вид сверху Поле Е делает то же самое До - фото 183

Фиг. 18.5. То же, что на фиг. 18.3 (вид сверху).

Поле Е делает то же самое. До момента t=0 (когда мы вклю­чаем ток) поле повсюду равно нулю. Затем, спустя время t , как Е, так и В постоянны вплоть до расстояния х = vt , а за ним равны нулю. Поля продвигаются вперед, подобно прилив­ной волне, причем фронт их движется с постоянной скоростью, которая оказывается равной с, но пока мы будем называть ее v . Изображение зависимости величины Е или В от х (как они ка­жутся в момент t ) показано на фиг. 18.4, а. Если снова посмот­реть на фиг. 18.3 в момент t , то мы увидим, что область между xvt «занята» полями, но они еще не достигли области за ней. Мы снова подчеркиваем — мы предполагаем, что лист заряжен, а следовательно, поля Е и В простираются бесконечно далеко в у- и z-направлениях. (Мы не можем изобразить бес­конечный лист, поэтому мы показываем лишь то, что происхо­дит в конечной области.)

Теперь мы хотим проанализировать количественно то, что происходит. Чтобы сделать это, рассмотрим два поперечных разреза: вид сверху, если смотреть вниз вдоль оси у (фиг. 18.5), и вид сбоку, если смотреть назад вдоль оси z (фиг. 18.6). Начнем с вида сбоку. Мы видим заряженный лист, движущийся вверх; магнитное поле направлено внутрь страницы для +x и от стра­ницы для - х, а электрическое поле направлено вниз всюду, вплоть до x = ± vt .

Посмотрим, согласуются ли такие поля с уравнениями Мак­свелла. Сначала нарисуем одну из тех петель, которыми мы пользовались для вычисления контурного интеграла, скажем прямоугольник Г 2на фиг. 18.6.

Фиг 186 То же что на фиг 183 вид сбоку Заметьте что одна сторона - фото 184

Фиг. 18.6. То же, что на фиг. 18.3 (вид сбоку).

Заметьте, что одна сторона прямоугольника проходит в области, где есть поля, а другая — в области, до которой поля еще не дошли. Через эту петлю проходит какой-то магнитный поток. Если он изменяется, должна появиться э. д. с. вдоль петли. Если волновой фронт движется, мы будем иметь меняющийся магнитный поток, поскольку поверхность, внутри которой существует поле В, непрерывно увеличивается со скоростью v . Поток внутри Г 2равен произведению В на ту часть поверхности внутри Г 2)где есть магнитное поле. Скорость изменения потока (посколь­ку величина В постоянна) равна величине поля, умноженной на скорость изменения поверхности. Скорость изменения по­верхности найти легко. Если ширина прямоугольника Г 2равна L , то поверхность, в которой В существует, меняется как Lv D t за отрезок времени Dt (см. фиг. 18.6). Скорость изме­нения потока тогда равна BLv . По закону Фарадея она должна быть равна контурному интегралу от Е вокруг Г 2, который есть просто EL . Мы получаем равенство

1810 Таким образом если отношение Е к В равно v то рассматриваемые - фото 185

(18.10)

Таким образом если отношение Е к В равно v то рассматриваемые нами поля - фото 186

Таким образом, если отношение Е к В равно v , то рассматри­ваемые нами поля будут удовлетворять уравнению Фарадея. Но это не единственное уравнение; у нас есть еще одно, связывающее Е и В:

(18.11)

Чтобы применить это уравнение, посмотрим на вид сверху, изображенный на фиг. 18.5. Мы уже видели, что это уравнение дает нам значение В вблизи заряженного листа. Кроме того, для любой петли, нарисованной вне листа, но позади волнового фронта, нет ни ротора В, ни j или меняющегося поля Е, так что уравнение там справедливо. А теперь посмотрим, что происходит в петле Г 1, которая пересекает волновой фронт, как показано на фиг. 18.5. Здесь нет токов, поэтому уравнение (18.11) можно записать в интегральной форме так:

1812 Контурный интеграл от В есть просто произведение В на L Скорость - фото 187

(18.12)

Контурный интеграл от В есть просто произведение В на L . Скорость изменения потока Е возникает только благодаря продвигающемуся волновому фронту. Область внутри Г 1, где Е не равно нулю, увеличивается со скоростью vL . Правая сто­рона (18.12) тогда равна vLE . Уравнение это приобретает вид

Feynmann 6 - изображение 188

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Feynmann 6»

Представляем Вашему вниманию похожие книги на «Feynmann 6» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Feynmann 6»

Обсуждение, отзывы о книге «Feynmann 6» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x