
(18.3)

Во втором слагаемом можно переставить порядок дифференцирования по координатам и времени, так что уравнение может быть переписано в виде
(18.4)
Но, согласно первому из уравнений Максвелла, дивергенция Е равна r/e 0. Подставляя это равенство в (18.4), мы придем к уравнению (18.2), которое, как мы знаем, правильно. И наоборот, если мы принимаем уравнения Максвелла (а мы принимаем их потому, что никто никогда не обнаружил эксперимента, который опроверг бы их), мы должны прийти к выводу, что заряд всегда сохраняется.
Законы физики не дают ответа на вопрос: «Что случится, если заряд внезапно возникнет в этой точке, какие будут при этом электромагнитные эффекты?». Ответ дать нельзя, потому что наши уравнения утверждают, что такого не происходит. Если бы это случилось, нам понадобились бы новые законы, но мы не можем сказать, какими бы они были. Нам не приходилось наблюдать, как ведет себя мир без сохранения заряда. Согласно нашим уравнениям, если вы внезапно поместите заряд в некоторой точке, вы должны принести его туда откуда-то еще. В таком случае мы можем говорить о том, что произошло.
Когда мы добавили новый член в уравнение для ротора Е, мы обнаружили, что им описывается целый новый класс явлений. Мы увидим также, что небольшая добавка Максвелла к уравнению для СXB имеет далеко идущие последствия. Мы затронем лишь некоторые из них в этой главе.
§ 2. Что дает добавка
В качестве нашего первого примера рассмотрим, что происходит со сферически симметричным радиальным распределением тока. Представим себе маленькую сферу с нанесенным на ней радиоактивным веществом. Это радиоактивное вещество испускает наружу заряженные частицы. (Мы можем представить также большой кусок желе с маленьким отверстием в центре, в которое с помощью шприца впрыскиваются какие-то заряды и из которого заряды медленно просачиваются.)

Ф u г18.1 . Каково магнитное поле сферически симметричного тока?
В любом случае мы имели бы ток, который повсюду направлен по радиусу наружу. Будем считать, что величина его одинакова во всех направлениях.

Пусть полный заряд внутри сферы произвольного радиуса r есть Q ( r ). Если плотность радиального тока при таком же радиусе равна j(r), то уравнение (18.2) требует, чтобы Q уменьшалось со скоростью
(18.5)
Спросим теперь о магнитном поле, создаваемом токами в этом случае. Предположим, мы начертили какую-то петлю Г на сфере радиуса r (фиг. 18.1). Сквозь петлю проходит какой-то ток, поэтому можно ожидать, что магнитное поле циркулирует в направлении, указанном на фигуре.
И сразу возникает затруднение. Как может поле В иметь какое-то особое направление на сфере? При другом выборе петли Г мы бы заключили, что ее направление прямо противоположно указанному. Поэтому возможна ли какая-либо циркуляция В вокруг токов?
Нас спасают уравнения Максвелла. Циркуляция В зависит не только от полного тока, проходящего сквозь петлю Г, но и от скорости изменения со временем электрического потока через нее. Должно быть так, чтобы эти две части как раз погашались. Посмотрим, получается ли это.

Электрическое поле на расстоянии r должно быть равно Q(г)/4pe 0r 2, пока, как мы предположили, заряд распределен симметрично. Поле радиально, и скорость его изменения тогда равна
(18.6)
Сравнивая это с (18.5), мы видим, что для любого расстояния

(18.7)
В уравнении IV (табл. 18.1) оба члена от источника погашаются и ротор В равен всегда нулю. Магнитного поля в нашем примере нет.
В качестве второго нашего примера рассмотрим магнитное поле провода, используемого для зарядки плоского конденсатора (фиг. 18.2). Если заряд Q на пластинах со временем изменяется (но не слишком быстро), ток в проводах равен dQ / dt . Мы ожидаем, что этот ток создаст магнитное поле, которое окружает провод. Конечно, ток вблизи провода должен создавать обычное магнитное поле, оно не может зависеть от того, где идет ток.
Читать дальше