Feynmann - Feynmann 6

Здесь есть возможность читать онлайн «Feynmann - Feynmann 6» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Старинная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Feynmann 6: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Feynmann 6»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Feynmann 6 — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Feynmann 6», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Уравнения Максвелла

Feynmann 6 - изображение 163

(Поток Е через замкнутую поверх­ность) = (Заряд внутри нее)/e 0

Feynmann 6 - изображение 164

(Интеграл от Е по замкнутому кон­туру) = -d/dt (Поток В сквозь контур)

Feynmann 6 - изображение 165

(Поток В через замкнутую поверх­ность) = 0

с 2Интеграл от В по контуруТок в контуре e 0 ddtПоток Е сквозь контур - фото 166

с 2(Интеграл от В по контуру)=(Ток в контуре) /e 0+ d/dt(Поток Е сквозь контур)

Поток заряда через замкнутую поверхность ddtЗаряд внутри нее Закон - фото 167

(Поток заряда через замкнутую по­верхность) =-d/dt(Заряд внутри нее)

Закон силы

F = q(E+vXB)

Закон движения

(Закон Ньютона, исправлен­ный Эйнштейном}

Feynmann 6 - изображение 168

Гравитация

Поскольку магнитных зарядов нет, поток В через любую замкнутую поверхность всегда равен нулю. Второе уравнение СXE=- dB / dt это закон Фарадея, и обсуждался он в последних двух главах. Он тоже верен в общем случае. Но последнее уравнение содержит нечто новое. Раньше мы встречались только с частью его, которая годится для постоянных токов. В этом случае мы говорили, что ротор В равен j/e 0c 2, но правильное общее уравнение имеет новый член, который был открыт Максвеллом.

До появления работы Максвелла известные законы элек­тричества и магнетизма были такими же, как те, что мы изучали в гл. 3—14 (вып. 5) и гл. 15—17. В частности, урав­нение для магнитного поля постоянных токов было известно только в виде

Feynmann 6 - изображение 169

(18.1)

Максвелл начал с рассмотрения этих известных законов и вы­разил их в виде дифференциальных уравнений, так же как мы поступили здесь. (Хотя символ С еще не был придуман, впер­вые, в основном благодаря Максвеллу, стала очевидной важ­ность таких комбинаций производных, которые мы сегодня называем ротором и дивергенцией.) Максвелл тогда заметил, что в уравнении (18.1) есть нечто странное. Если взять дивер­генцию от этого уравнения, то левая сторона обратится в нуль, потому что дивергенция ротора всегда равна нулю. Таким об­разом, это уравнение требует, чтобы дивергенция j также была равна нулю. Но если дивергенция j равна нулю, то полный ток через любую замкнутую поверхность тоже равен нулю.

Feynmann 6 - изображение 170

Полный ток через замкнутую поверхность равен уменьше­нию заряда внутри этой поверхности. Он наверняка не может быть всегда равен нулю, так как мы знаем, что заряды могут перемещаться из одного места в другое. Уравнение

(18.2)

фактически есть наше определение j Это уравнение выражает самый - фото 171

фактически есть наше определение j. Это уравнение выражает самый фундаментальный закон — сохранение электрического заряда: любой поток заряда должен поступать из какого-то запаса. Максвелл заметил эту трудность и, чтобы избежать ее, предложил добавить dE / dt в правую часть уравнения (18.1); тогда он и получил уравнение IV в табл. 18.1:

Во времена Максвелла еще не привыкли мыслить в терми­нах абстрактных полей. Максвелл обсуждал свои идеи с по­мощью модели, в которой вакуум был подобен упругому телу. Он пытался также объяснить смысл своего нового уравнения с помощью механической модели. Теория Максвелла принималась очень неохотно, во-первых, из-за модели, а, во-вторых, потому, что вначале не было экспериментального подтверждения. Сей­час мы лучше понимаем, что дело в самих уравнениях, а не в модели, с помощью которой они были получены. Мы можем только задать вопрос, правильны ли эти уравнения или они ошибочны. Ответ дает эксперимент. И уравнения Максвелла были подтверждены в бессчетных экспериментах. Если мы отбросим все строительные леса, которыми пользовался Мак­свелл, чтобы построить уравнения, мы придем к заключению, что прекрасное здание, созданное Максвеллом, держится само по себе. Он свел воедино все законы электричества и магне­тизма и создал законченную и прекрасную теорию.

Давайте покажем, что добавочный член имеет тот самый вид, который требуется, чтобы преодолеть обнаруженную Мак­свеллом трудность. Взяв дивергенцию его уравнения (IV в табл. 18.1), мы должны получить, что дивергенция правой части равна нулю:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Feynmann 6»

Представляем Вашему вниманию похожие книги на «Feynmann 6» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Feynmann 6»

Обсуждение, отзывы о книге «Feynmann 6» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x