
Подставляя вместо e ее выражение через токи из (17.34), имеем
(17.38)

Интегрируя это уравнение, находим, что энергия, которая требуется от внешнего источника, чтобы преодолеть э. д. с. самоиндукции и создать ток (что должно равняться накопленной энергии U), равна
(17.37)
Поэтому энергия, накопленная в индуктивности, равна 1/ 2ж I 2. Применяя те же рассуждения к паре катушек, изображенных на фиг. 17.8 или 17.9, мы можем показать, что полная электрическая энергия системы дается выражением

(17.38)
В самом деле, начиная с тока I=0 в обеих катушках, можно вначале включить ток I 1в катушке 1, оставляя I 2=0. Совершенная работа как раз равна l / 2 ж 1 l 1 2 . Но теперь, включая I 2, мы совершаем не только работу 1/ 2ж 2I 2 2против э. д. с. в цепи 2, но еще и добавочное количество работы —m I 1I 2, которая есть интеграл
от э. д. с. m ( dI z / dt ) в цепи 1, умноженный на теперь уже постоянный ток I 1в этой цепи.

Пусть теперь нам нужно найти силу между любыми двумя катушками, по которым идут токи I 1и I 2. Прежде всего мы могли бы использовать принцип виртуальной работы, взяв вариацию от энергии (17.38). Мы должны помнить, конечно, что при изменении относительного положения катушек единственной меняющейся величиной является коэффициент взаимной индукции m. Тогда мы могли бы записать уравнение виртуальной работы в виде

Это уравнение ошибочно, потому что, как мы видели раньше, в него включено только изменение энергии двух катушек и не включена энергия источников, которые поддерживают постоянными значения токов I 1 и I 2. Мы понимаем теперь, что эти источники должны поставлять энергию для компенсации индуцированных э. д. с. в катушках во время их движения. Если мы хотим правильно применить принцип виртуальной работы, то должны включить и эти энергии. Но мы видели, что можно сделать и короче — использовать принцип виртуальной работы, помня, что полная энергия — это взятая с обратным знаком энергия U мех(то что мы называем «механической энергией»). Поэтому силу можно записать в виде
(17.39)

Тогда сила между катушками дается выражением
Воспользуемся выражением (17.38) для энергии системы из двух катушек, чтобы показать, какое интересное неравенство существует между взаимной индукцией m и коэффициентами самоиндукции ж 1и ж 2 двух катушек. Ясно, что энергия двух катушек должна быть положительной. Если мы начинаем с нулевых токов в обеих катушках и увеличиваем эти токи до некоторых значений, то тем самым мы увеличиваем энергию всей системы. В противном случае токи самопроизвольно возрастут и будут отдавать энергию остальному миру — вещь невероятная! Далее, наше выражение для энергии (17.38) можно с

таким же успехом записать в следующей форме:
(17.40)
Это просто алгебраическое преобразование. Эта величина должна быть всегда положительна при любых значениях I 1и I 2. В частности, она должна быть положительна, когда I 2вдруг примет особое значение:

(17.41)

Но при таком значении I 2первое слагаемое в (17.40) равно нулю. Если энергия положительна, то последнее слагаемое в (17.40) должно быть больше нуля. Мы получаем требование, что

Таким образом, мы доказали общее соотношение, что величина взаимной индукции m любых двух катушек обязательно меньше или равна геометрическому среднему двух коэффициентов самоиндукции (сам m может быть положителен или отрицателен в зависимости от выбора знаков для токов I tи I 2):
Читать дальше