Feynmann - Feynmann 6

Здесь есть возможность читать онлайн «Feynmann - Feynmann 6» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Старинная литература, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Feynmann 6: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Feynmann 6»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Feynmann 6 — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Feynmann 6», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

m 12= m 21= m.

§ 7 . Самоиндукция

При обсуждении индуцированных э. д. с. в двух катушках на фиг. 17.8 и 17.9 мы рассмотрели лишь случай, когда ток проходит либо в одной катушке, либо в другой. Если токи име­ются одновременно в обеих катушках, то магнитный поток, пронизывающий каждую катушку, будет представлять сумму двух потоков, существующих и по отдельности, поскольку к магнитным полям применим принцип суперпозиции. Поэтому э. д. с. в каждой катушке будет пропорциональна не только изменению тока в другой катушке, но и изменению тока в ней самой.

Фиг 1710 Цепь с источником напряжения и индуктивностью а и аналогичная ей - фото 134

Фиг. 17.10. Цепь с источником напряжения и индуктивностью (а) и аналогичная ей механиче­ская система (б).

Таким образом полную э д с в катушке 2 следует записать в виде 1731 - фото 135

Таким образом, полную э. д. с. в катушке 2 следует за­писать в виде

(17.31)

Аналогично э д с в катушке 1 будет зависеть не только от изменяющегося - фото 136

""Аналогично, э. д. с. в катушке 1 будет зависеть не только от изменяющегося тока в катушке 2, но и от изменяющегося тока в ней самой:

(17.32)

Коэффициенты m 22и m 11всегда отрицательны Обычно пишут 1733 где ж 1и ж 2 - фото 137

Коэффициенты m 22и m 11всегда отрицательны. Обычно пишут

(17.33)

где ж 1и ж 2 называют коэффициентами самоиндукции двух катушек (или индуктивностями).

Конечно, э. д. с. самоиндукции будет существовать даже для одной катушки. Любая катушка сама по себе обладает коэффициентом самоиндукции ж и ее

э. д. с. будет пропорцио­нальна скорости изменения тока в катушке. Обычно считают, Что э. д. с. и ток одной катушки положительны, если они на­правлены одинаково. При этом условии для отдельной катушки

можно написать

Feynmann 6 - изображение 138

(17.34)

Знак минус указывает на то, что э. д. с. противодействует изменению тока, ее часто называют «обратной э. д. с.».

Поскольку любая катушка обладает самоиндукцией, проти­водействующей изменению тока, ток в катушке обладает своего рода инерцией. Действительно, если мы хотим изменить ток в катушке, мы должны преодолеть эту инерцию, присоединяя катушку к какому-то внешнему источнику, например батарее или генератору (фиг. 17.10, а). В такой цепи ток / связан с на­пряжением V соотношением

Feynmann 6 - изображение 139

(17.35)

Это соотношение имеет форму уравнения движения Ньютона для частицы в одном измерении. Поэтому мы можем исследо­вать его по принципу «одинаковые уравнения имеют одинако­вые решения». Таким образом, если поставить в соответствие напряжение V от внешнего источника приложенной внешней силе F , а ток I в катушке скорости v частицы, то коэффициент индукции катушки ж будет соответствовать массе т частицы (фиг. 17,10, б).

Таблица 17.1 · СОПОСТАВЛЕННЫЕ ВЕЛИЧИНЫ

8 Индуктивность и магнитная энергия Продолжая аналогию предыдущего - фото 140

§ 8. Индуктивность и магнитная энергия

Продолжая аналогию предыдущего параграфа, мы отметили в таблице, что в соответствии с механическим импульсом p = mv (скорость изменения которого равна приложенной силе) должна существовать аналогичная величина, равная

ж I, ско­рость изменения которой V. Разумеется, мы не имеем права говорить, что ж I — это настоящий импульс цепи; на самом деле это вовсе не так. Вся цепь может быть неподвижна и вооб­ще не иметь импульса. Просто ж I аналогично импульсу mv в смысле удовлетворения аналогичным уравнениям.

Точно так же кинетической энергии 1/ 2mv 2здесь соответствует анало­гичная величина 1/ 2ж 2. Но здесь нас ждет сюрприз. Величина 1/ 2aж I 2— действительно есть энергия и в электрическом случае. Так получается потому, что работа, совершаемая в единицу времени над индуктивностью, равна VI , а в механической систе­ме она равна Fv соответствующей величине. Поэтому в слу­чае энергии величины не только соответствуют друг другу в математическом смысле, но имеют еще и одинаковое физиче­ское значение.

Feynmann 6 - изображение 141

Мы можем проследить это более подробно. В (17.16) мы наш­ли, что электрическая работа в единицу времени за счет сил индукции есть произведение э. д. с. и тока:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Feynmann 6»

Представляем Вашему вниманию похожие книги на «Feynmann 6» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Feynmann 6»

Обсуждение, отзывы о книге «Feynmann 6» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x