§ 7. Типы воли в волноводе
Выбранная нами для анализа волна — всего лишь одно из решений уравнений поля. Их на самом деле куда больше. Каждое решение представляет собой свой «тип волны» в волноводе. Скажем, в нашей волне вдоль направления х укладывалось только полсинусоиды. Ничуть не хуже решение, в котором вдоль х укладывается вся синусоида; изменение Е y с х тогда показано на фиг. 24.14. У этого типа волн k x вдвое больше и граничная частота много выше. Кроме того, изученная нами волна Е имеет лишь y-компоненту, но бывают и типы волн с более сложными электрическими полями. Если у электрического поля есть только х- и y-компоненты, так что оно всегда перпендикулярно к оси z , то такой тип волн называется «поперечным электрическим» (или сокращенно ТЕ) типом волн. Магнитное поле в волне такого типа всегда обладает z-компонентой. Далее, оказывается, что когда у Е есть z-компонента (вдоль направления распространения), то у магнитного поля есть только поперечные

Фиг. 24.14. Еще одна возможная зависимость Е у от х.
компоненты. Такие поля называются «поперечными магнитными» (сокращенно ТМ) типами волн. В прямоугольном волноводе все типы обладают более высокой граничной частотой, чем описанный нами простой TE-тип. Поэтому всегда возможно (и так обычно делают) использовать такой волновод, в котором частота немного превышает граничную частоту этого наинизшего типа колебаний, но находится ниже граничных частот всех других типов. В таком волноводе распространяется волна только одного типа. В противном случае поведение волн усложняется и его трудно контролировать.
§ 8. Другой способ рассмотрения волн в волноводе
Теперь я хочу по-другому объяснить вам, почему волновод так сильно ослабляет поля, частота которых ниже граничной частоты w с. Я хочу, чтобы вы получили более «физическое» представление о том, почему так резко меняется поведение волновода при низких и при высоких частотах. Для прямоугольного волновода это можно сделать, анализируя поля на языке отражений (или изображений) в стенках волновода. Такой подход годится, однако, только для прямоугольных волноводов; вот почему мы начали с математического анализа, который в принципе годится для волноводов любой формы.
Для описанного нами типа колебаний вертикальные размеры (по у) не имели никакого значения, поэтому можно не обращать внимания на верх и низ волновода и представлять себе, что волновод в вертикальном направлении простирается бесконечно. Пусть он просто состоит из двух вертикальных пластин, удаленных друг от друга на расстояние а.
Давайте возьмем в качестве источника полей вертикальный провод между пластинами; по нему течет ток, который меняется

Фиг. 24.15, Линейный источник S 0 между проводящими плоскими стенками W 1 и W 2 . Стенки можно заменить бесконечной последовательностью изображений источников.
с частотой w. Если бы волновод не имел стенок, то от такого провода расходились бы цилиндрические волны.
Представим, что стенки волновода сделаны из идеального проводника. Тогда, в точности как в электростатике, условия на поверхности будут выполнены, если к полю провода мы добавим поле одного или нескольких правильно подобранных его изображений. Представление об изображениях работает в электродинамике ничуть не хуже, чем в электростатике, при условии, конечно, что мы учитываем запаздывание. Мы знаем, что это так, потому что мы много раз видели в зеркале изображение источника света. А зеркало — это и есть «идеальный» проводник для электромагнитных волн оптической частоты.
Рассечем наш волновод горизонтально, как показано на фиг. 24.15, где W 1 и W 2 — стенки волновода, a S 0 — источник (провод). Обозначим направление тока в проводе знаком плюс. Будь у волновода лишь одна стенка, скажем W l , , ее можно было бы убрать, поместив изображение источника (с противоположной полярностью) в точке S 1. Но при двух стенках появится также изображение S u в стенке W 2 ; обозначим его S 2. Этот источник также будет обладать своим изображением в W 1; обозначим его S 3 . Дальше, сами S 1 и S 3 изобразятся в W 2 точками S 4и S 6 и т. д. И для нашей пары плоских проводников с источником посредине поле между проводниками совпадет с нолем, генерируемым бесконечной цепочкой источников на расстоянии а друг от друга. (Это на самом деле как раз то, что вы увидите, посмотрев на провод, расположенный посредине между двумя параллельными зеркалами.) Чтобы поля обращались в нуль на стенках, полярности токов в изображениях должны меняться от одного изображения к следующему. Иначе говоря, их фаза меняется на 180°. Поле волновода — это просто суперпозиция полей всей этой бесконечной совокупности линейных источников.
Читать дальше