что можно также представить в виде
(24.24)
Это выражение приводит к полю Е, которое во времени колеблется как e i w t , a no z меняется как e ± k ' z . Оно плавно убывает или возрастает с z, как всякая действительная экспонента. В нашем выводе мы не думали о том, откуда взялись волны, где их источник, но, конечно, где-то в волноводе он должен быть. И знак, который стоит при k ' , должен быть таков, чтобы поле убывало при удалении от источника волн.
Итак, при частотах ниже w с — p с/а волны вдоль трубы не распространяются; осциллирующее поле проникает в трубу лишь на расстояние порядка i / k ' . По этой причине частоту w с называют «граничной частотой» волновода. Глядя на (24.22), мы видим, что для частот чуть пониже w cчисло k ' мало, и поля могут проникать в трубу довольно далеко. Но если со намного меньше w с, коэффициент k ' в экспоненте равняется p/а, и поле отмирает чрезвычайно быстро (фиг. 24.7). Поле убывает в е раз на расстоянии а/p, т. е. на трети ширины волновода. Поля проникают в волновод на очень малое расстояние от источника.
Мы хотим еще раз подчеркнуть эту характерную черту нашего анализа прохождения волн по трубе — появление мнимого волнового числа k z . Когда, решая уравнение в физике, мы получаем мнимое число, то это обычно ничего физического не означает. Для волн, однако, мнимое волновое число действительно нечто означает. Волновое уравнение по-прежнему удовлетворяется; оно только означает, что решение приводит к экспоненциально убывающему полю вместо распространяющихся волн

Фиг. 24.7. Изменение Е y с ростом z при w
Итак, если в любой задаче на волны k при какой-то частоте становится мнимым, это означает, что форма волны меняется — синусоида переходит в экспоненту.
§ 4. Скорость волн в волноводе

Та скорость волн, о которой мы пока говорили,— это фазовая скорость, т. е. скорость узлов волны; она есть функция частоты. Если подставить (24.17) в (24.18), то можно написать
(24.25)
Для частот выше граничной (для которых бегущая волна существует) w c/w меньше единицы, v фаз— действительное число, большее скорости света. Мы уже видели в гл. 48 (вып. 4), что фазовые скорости, большие скорости света, возможны, потому что это просто движутся узлы волн, а не энергия и не информация. Чтобы узнать, как быстро движутся сигналы, надо подсчитать быстроту всплесков или модуляций, вызываемых интерференцией волн одной частоты с одной или несколькими волнами слегка иных частот [см. гл. 48 (вып. 4)]. Скорость огибающей такой группы волн мы назвали волновой скоростью; это не w/k, a d w / dk :

(24.26)

Дифференцируя (24.17) по w и переворачивая, чтобы получить d w / dk , получаем
(24.27)
Это меньше скорости света.
Среднее геометрическое между v фаз и v грв точности равно с — скорости света:

(24.28)

Это любопытно, ведь сходное соотношение мы встречали и в квантовой механике. У частицы с любой скоростью (даже у релятивистской) импульс р и энергия U связаны соотношением
(24.29)
Но в квантовой механике энергия — это hw, а импульс —это h / l ’ , или h k ; значит, (24.29) можно записать так:

(24.30)

или
(24.31)

а это очень похоже на (24.17). . . Интересно, не правда ли? Групповая скорость волн — это также скорость, с какой энергия передается по трубе. Если вам нужно найти поток энергии сквозь волновод, надо умножить плотность энергии на групповую скорость. Если среднее квадратичное электрическое поле равно Е 0 , то средняя плотность электрической энергии равна e 0 Е 2 0 /2. Кроме этого, часть энергии связана с магнитным полем. Мы не будем здесь это доказывать, но в любой полости или трубе магнитная и электрическая энергии равны между собой, так что полная плотность электромагнитной энергии равна e 0 Е 2 0 . А мощность dU / dt , передаваемая волноводом, поэтому равна
Читать дальше