Как уже говорилось, мы рассмотрим волну в одном измерении. Так можно поступить, если мы находимся достаточно далеко от источника и так называемый фронт волны мало отличается от плоскости. На этом примере наше доказательство будет проще, поскольку можно сказать, что смещение c зависит только от х и t , а не от у и z. Поэтому поведение воздуха описывается функцией c (х, t ).
Насколько полно такое описание? Казалось бы, оно очень не полно, потому что нам не известны подробности движения молекул воздуха. Они движутся во всех направлениях, и этот факт не отражается функцией c (х, t ). С точки зрения кинетической теории, если в одном месте наблюдается большая плотность молекул, а в соседнем меньшая, молекулы будут переходить из области с большей плотностью в область с меньшей плотностью, так чтобы уравнять плотности. Очевидно, что при этом никаких колебаний не происходит и звук не возникает. Для получения звуковой волны нужно, чтобы молекулы, вылетая из области с большей плотностью и давлением, переда-пали импульс другим молекулам, находящимся в области разрежения. Звук возникает в том случае, если размеры области изменения плотности и давления намного больше расстояния, проходимого молекулами до соударения с другими молекулами. Это расстояние есть длина свободного пробега, и оно должно быть много меньше расстояния между гребнями и впадинами давления. В противном случае молекулы перейдут из гребня во впадину, и волна моментально выровняется.
Мы, естественно, хотим описать поведение газа в масштабе, большем, чем длина свободного пробега, так что свойства газа не будут определяться поведением отдельных молекул. Например, смещение есть смещение центра инерции небольшого объема газа, а давление или плотность относятся к этому же объему. Мы обозначим давление через Р, а плотность через r, причем обе величины будут функциями от х и t . Необходимо помнить, что наше описание приближенное и справедливо лишь, когда свойства газа не слишком быстро меняются с расстоянием.
§ 3. Волновое уравнение
Итак, физические явления, происходящие в звуковой волне, обладают следующими тремя свойствами:
I. Газ движется, и плотность его меняется. II. При изменении плотности меняется и давление. III. Неравномерное распределение давления вызывает движение газа.
Рассмотрим сначала свойство П. Для любого газа, жидкости или твердого тела давление является функцией плотности. До прихода звуковой волны мы имели равновесное состояние с давлением Р 0и плотностью r. Давление Р зависит от плотности среды: Р=f(r), и в частности равновесное давление Р 0=f(r 0). Отклонения величины давления от равновесного в звуковой волне очень малы. Давление удобно измерять в барах (1 бар=10 5 н/м 2). Давление в одну стандартную атмосферу приблизительно равно 1 бар (1 атм=1,0133 бар). Для звука обычно используется логарифмическая шкала интенсивности, так как восприятие уха, грубо говоря, растет логарифмически. В этой децибельной шкале уровень звукового давления I связан с амплитудой звукового давления:
I =20log 10(P/P отн) дб , (47.1)
где давление отнесено к некоторому стандартному давлению Р отн=2·10 -10 бар.
Звуковое давление Р=10 3Р отн=2·10 -7бар соответствует довольно сильному звуку в 60 дб. Мы видим, что давление меняется в звуковой волне на очень малую величину по сравнению с равновесным или средним, равным 1 атм. Смещение и перепады плотности также очень малы. При взрывах, однако, изменения уже не столь малы; избыточное звуковое давление может превышать 1 атм. Такие большие перепады давления приводят к новым явлениям, которые мы рассмотрим позже. В звуковых волнах уровень силы звука выше 100 дб встречается редко; уровень силы звука в 120 дб уже вызывает боль в ушах. Поэтому, написав для звуковой волны
Р=Р 0+Р u, r = r 0+r u, (47.2)
можно считать, что изменение давления P u очень мало по сравнению с P 0, а изменение плотности r uочень мало по сравнению с r 0. Тогда
P 0+ Р u = f(r 0+r u)=f(r 0)+ r uf'(r 0), (47.3)
где P 0= f(r 0) и f'(r 0) — производная от f(r), взятая при значении r =r 0. Второе равенство здесь возможно только потому, что r uочень мало. Таким образом, мы находим, что избыточное давление P u пропорционально избыточной плотности r u; коэффициент пропорциональности обозначается через к:
(II) Р u=cr u, где c=f'(r 0)=(dP/dr) 0. (47.4)
Читать дальше