= []
filter p (x :xs) = ifp x thenx :filter p xs elsefilter p xs
Попробуйте разобраться с ним самостоятельно, по аналогии с map. Оно может показаться немного гро-
моздким, но это ничего, совсем скоро мы узнаем как записать его гораздо проще.
Рассмотрим ещё одну функцию для списков, она называется функцией свёртки:
Рекурсивные типы | 55
foldr ::(a ->b ->b) ->b ->[a] ->b
foldr f z []
=z
foldr f z (a :as) =f a (foldr f z as)
Визуально её действие можно представить как замену всех конструкторов в дереве значения на подхо-
дящие по типу функции. В этой маленькой функции кроется невероятная сила. Посмотрим на несколько
примеров:
Prelude Data.Char> :m -Data.Char
Prelude> letxs =[1,2,3,4,5]
Prelude>foldr ( :) []xs
[1,2,3,4,5]
Мы заменили конструкторы на самих себя и получили исходный список, теперь давайте сделаем что-
нибудь более конструктивное. Например вычислим сумму всех элементов или произведение:
Prelude>foldr ( +) 0 xs
15
Prelude>foldr ( *) 1 xs
120
Prelude>foldr max (head xs) xs
5
3.6 Краткое содержание
В этой главе мы присмотрелись к типам и узнали как ограничения, общие для всех типов, сказываются
на структуре значений. Мы узнали, что константы в Haskell очень похожи на деревья, а запись констант
– на строчную запись дерева. Также мы присмотрелись к функциям и узнали, что операция определения
синонима состоит из композиции и декомпозиции значений.
name
декомпозиция
=
композиция
Существует несколько правил для построения композиций:
• Одно для функций в префиксной форме записи:
f ::a ->b,
x ::a
-------------------------------
(f x) ::b
• И два для функций в инфиксной форме записи:
Это левое сечение:
( *) ::a ->(b ->c),
x ::a
---------------------------------
(x *) ::b ->c
И правое сечение:
( *) ::a ->(b ->c),
x ::b
---------------------------------
( *x) ::a ->c
Декомпозиция происходит в аргументах функции. С её помощью мы можем извлечь из составной
константы-дерева какую-нибудь часть или указать на какие константы мы реагируем в данном уравнении.
Ещё мы узнали о частичном применении . О том, что все функции в Haskell являются функциями одного
аргумента, которые возвращают константы или другие функции одного аргумента.
Мы потренировались в составлении неправильных выражений и посмотрели как компилятор на основе
правил применения узнаёт что они неправильные. Мы узнали, что такое ограничение мономорфизма и как
оно появляется. Также мы присмотрелись к рекурсивным функциям.
56 | Глава 3: Типы
Succ
not
Рис. 3.7: Конструкторы и синонимы
3.7 Упражнения
• Составьте в интерпретаторе как можно больше неправильных выражений и посмотрите на сообще-
ния об ошибках. Разберитесь почему выражение оказалось неправильным. Для этого проверьте типы с
помощью правил применения. Составьте несколько выражений, ведущих к ошибке из-за ограничения
мономорфизма.
• Потренируйтесь в интерпретаторе с функциями map, filter и foldr. Попробуйте их с самыми разными
функциями. Воспользуйтесь и теми функциями, что были определены в прошлой главе в тексте или в
упражнениях.
• В этой главе было много картинок и графических аналогий, попробуйте попрограммировать в картин-
ках. Нарисуйте определённые нами функции или какие-нибудь новые в виде деревьев. Например, это
можно сделать так. Мы будем отличать конструкторы от синонимов. Конструкторы будем рисовать в
одинарном кружке, а синонимы в двойном.
one
=
Nat
Succ
Zero
Рис. 3.8: Синоним-константа
Мы будем все функции писать также как и прежде, но вместо аргументов слева от знака равно и выра-
жений справа от знака равно, будем рисовать деревья.
Например, объявим простой синоним-константу (рис. 3.8). Мы будем дорисовывать сверху типы зна-
чений вместо объявления типа функции.
Несколько функций для списков. Извлечение первого элемента (рис. 3.9) и функция преобразования
всех элементов списка (рис. 3.10). Попробуйте в таком же духе определить несколько функций.
Упражнения | 57
head
Читать дальше