->(8,6)
TainstvenniyLes
->(11,7)
DnoBolota
->( -7, -4)
PlBakha
->( -3, -3)
Lao
->(3.5,0)
Sever
->(6,1)
PlShekspira
->(3, -3)
dist :: Point -> Point -> Double
dist a b =sqrt $(px a -px b) ^2 +(py a -py b) ^2
stationDist :: Station -> Station -> Double
stationDist ( Stn a) ( Stm b)
|n /=m &&a ==b
=penalty
|otherwise
=dist (place a) (place b)
wherepenalty =1
Расстояние между точками вычисляется по формуле Евклида (dist). Если у станций одинаковые имена,
но они расположены на разных линиях мы будем считать, что расстояние между ними равно единице. Теперь
нам необходимо описать связность станций. Мы опишем связность в виде функции, которая для данной
станции возвращает список всех соседних с ней станций:
metroMap :: Station ->[ Station]
metroMap x = casex of
St Black Kosmodrom
->[ St Black UlBylichova]
St Black UlBylichova
->
[ St Black Kosmodrom, St Black Zvezda, St Red UlBylichova]
St Black
Zvezda
->
[ St Black UlBylichova, St Blue
Zvezda, St Green Zvezda]
...
Приведён пример заполнения только для одной линии. Остальные линии заполняются аналогично. Об-
ратите внимание на то, что некоторые станции имеют одинаковые имена, но находятся на разных линиях.
Всё готово для того чтобы написать функцию поиска маршрута. Для этого мы воспользуемся алгоритмом
A*.
19.1 Алгоритм эвристического поиска А*
Наша задача относится к задачам поиска путей на графе. Путём на графе называют такую последователь-
ность узлов, в которой для любых двух соседних узлов существует ребро, которое их соединяет. В нашем
случае графом является карта метро, узлами~– станции, рёбрами~– линии между станциями, а путями~–
маршруты.
Представим, что мы находимся в узле Aи нам необходимо попасть в узел Bи единственное, что нам
известно~– это все соседние узлы с тем, в котором мы находимся. У нас есть возможность перейти в один
276 | Глава 19: Ориентируемся по карте
из соседних узлов и посмотреть нет ли среди их соседей узла B. В этом случае нам ничего не остаётся кроме
того как бродить по карте от станции к станции в случайном порядке, пока мы не натолкнёмся на узел Bили
все узлы не кончатся. Такой поиск называют слепым.
Вот если бы у нас был компас, который в каждой точке указывал в сторону цели нам было бы гораздо
проще. Такой компас принято называть эвристикой . Это функция, которая принимает узел и возвращает
число. Чем меньше число, тем ближе узел к цели. Обычно эвристика указывает не точное расстояние до
цели, поскольку мы не знаем где цель, а приблизительную оценку. Мы не знаем расстояние до цели, но
догадываемся, нам кажется, что она где-то там, ещё чуть-чуть и мы найдём её. Примером эвристики для
поиска по карте может быть функция, которая вычисляет расстояние по прямой до цели. Предположим, что
мы не знаем где находится цель (какая дорога к ней ведёт), но мы знаем её координаты. Также мы знаем
координаты каждой вершины, в которой мы находимся. Тогда мы можем легко вычислить расстояние по
прямой до цели и наш поиск станет гораздо более осмысленным.
Так находясь в точке Aмы можем сразу пойти в тот соседний узел, который ближе всех к цели. Такой
поиск называют поиском по первому лучшему приближению. В поиске A* учитывается не только расстояние
до цели, но и то расстояние, которое мы уже прошли. Мы выбираем не ту вершину, которая ближе к цели, а
ту для которой полный путь до цели будет минимальным. Ведь пока мы идём мы можем запоминать какое
расстояние мы уже прошли. Прибавив к этому значению, то которое мы получим с помощью эвристики мы
получим полный (предполагаемый) путь до цели.
Поиск А* гораздо лучше поиска по первому лучшему приближению. Его часто применяют в компьютерных
играх для поиска пути или принятия решений.
Принято разделять поиск на графе и поиск на дереве. Если мы идём по графу, то вершины могут по-
вторятся (они образуют циклы). В случае поиска на дереве мы считаем, что все вершины уникальны. При
Читать дальше