1 ...7 8 9 11 12 13 ...26 Недавно мы провели исследование: сохраняются ли для тактильных и мультисенсорных репрезентаций те же объектные и пространственные измерения, что и для визуальных [45] Lacey S., Lin J.B., Sathian K (2011) Object and spatial imagery dimensions in visuo-haptic representations // Experimental Brain Research, № 213: 267–273.
. Мы использовали идею о том, что люди с объектным мышлением считывают информацию о свойствах поверхности лучше, чем люди с пространственным мышлением. Для проверки этой гипотезы мы использовали задания, подразумевающие распознавание формы при изменении текстуры, и распознавание текстуры при изменении формы [46] В задании использовались деревянные блоки, имевшие разные текстуру за счет покрытия наждачной бумагой, бумагой с текстом, набранным шрифтом Брайля, бархатной тканью. Еще один блок оставался гладким (прим. науч. ред.).
. В процессе как зрения, так и осязания, распознавание формы ухудшалось из-за изменений текстуры у тех, кто мыслил объектно, но не у тех, кто мыслил пространственно. В то же время распознавание текстур ухудшалось из-за изменений формы именно у мыслящих пространственно, а не у мыслящих объектно. Аналогичная картина наблюдалась и в условиях кросс-модальности, когда участники получали доступ к мультисенсорному, независимому от точки обзора, образу, опыту, описанному выше [47] Cм. Lacey S. et al. (2009b).
. Люди, мыслящие объектно, хуже распознавали форму при изменении текстуры, в то время как люди с пространственным мышлением продолжали различать форму, независимо от того, изменилась текстура или нет [48] Lacey S. et al. (2011).
. Таким образом, раскрытие роли объектных и пространственных образов дает больше преимуществ, чем использование недифференцированного подхода, сфокусированного только на визуальном образе. Это разделение важно, потому что и зрение, и осязание кодируют пространственную информацию об объектах – например, размер, форму и различные характеристики объекта. Такая информация вполне может быть использована в качестве независимого от модальности восприятия пространственного образа [49] Lacey S., Campbell C. (2006) Mental representation in visual / haptic crossmodal memory: Evidence from interference effects // Quarterly Journal of Experimental Psychology, № 59: 361–376.
. Подтверждение этой гипотезы можно найти в одном недавнем исследовании, показывающем, что оценки пространственных образов, в отличие от объектных, были согласованы друг с другом с высокой точностью именно при кросс-модальном, а не внутримодальном распознавании объектов [50] Lacey S. et al. (2007a).
.
Кортикальные области коры головного мозга, участвующие в обработке формы объектов на основании визуально-тактильной информации
Основная область коры головного мозга, участвующая в распознавании визуально-тактильной информации – это латеральная затылочная кора (ил. 1), известная как область, отвечающая за визуальное восприятие объектов [51] Malach R., Reppas J.B., Benson R.R., Kwong K.K., Jiang H., Kennedy W.A., Ledden P.J., Brady T.J., Rosen B.R., Tootell R.B. (1995) Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex // Proceedings of the National Academy of Sciences USA, № 92: 8135–8139.
. В то же время часть латеральной затылочной коры различает объекты как во время зрительной активности, так и при осязании [52] Amedi A., Malach R., Hendler T., Peled S., Zohary E. (2001) Visuohaptic object-related activation in the ventral visual pathway // Nature Neuroscience, № 4: 324–330; Amedi A. et al. (2002).
. Эта область коры головного мозга активна как во время осязательного трехмерного восприятия [53] Amedi A. et al. (2001); Zhang M. et al. (2004); Stilla R., Sathian K. (2008).
, так и во время тактильного двухмерного восприятия формы [54] Stoesz M., Zhang M., Weisser V.D., Prather S.C., Mao H., Sathian K. (2003) Neural networks active during tactile form perception: Common and differential activity during macrospatial and microspatial tasks // International Journal of Psychophysiology, № 50: 41–49; Prather S.C. et al. (2004).
. Считается, что она отвечает за восприятие геометрических форм в пространстве: она не участвует в распознавании объекта в случае, если человек слышит специфический для данного объекта звук [55] Amedi A. et al. (2002).
, однако начинает реагировать на этот звук после соответствующей тренировки, когда звуковое распознание объекта становится возможным с помощью устройств визуально-слухового сенсорного замещения [56] Amedi A., Stern W.M., Camprodon J.A., Bermpohl F., Merabet L., Rotman S., Hemond C., Meijer P., Pascual-Leone A. (2007) Shape conveyed by visual-to-auditory sensory substitution activates
. Такие устройства преобразовывают визуальную информацию о форме объектов в звуковой поток или «звуковой ландшафт», звучание которого меняется в зависимости от того, какие объекты попадают в камеру: за длину объектов (горизонтальная ось) отвечает длительность звука и стереопанорамирование, за высоту объектов (вертикальную ось) – тон звука, а яркость объектов передается за счет изменения громкости. В результате длительного обучения люди получают возможность извлекать информацию о форме объектов из данных звуковых ландшафтов, что позволяет распознавать знакомые объекты и даже использовать эту информацию при взаимодействии с незнакомыми объектами. Однако это становится возможно только в случае, если человек (зрячий the lateral occipital complex // Nature Neuroscience, № 10: 687–689. или незрячий) обучен данным правилам (понимает, что означают конкретные звуки), а не просто запомнил произвольные звуковые ассоциации [57] Amedi A. et al. (2007).
. В целом все это подтверждает, что латеральная затылочная кора занимается обработкой информации именно о форме объекта, вне зависимости от того, в какой сенсорной модальности происходит процесс восприятия объекта. Несколько теменных областей коры также демонстрируют мультисенсорное распознавание формы. К их числу принадлежит задняя часть первичной соматосенсорной коры (ил. 1) [58] Stilla R., Sathian K. (2008).
, которая обычно не относилась к числу мультисенсорных несмотря на то, что нейрофизиологические исследования обезьян позволяют говорить о том, что части первичной соматосенсорной коры отзываются также на визуальную стимуляцию [59] Zhou Y.-D., Fuster J.M. (1997) Neuronal activity of somatosensory cortex in a cross-modal (visuo-haptic) memory task // Experimental Brain Research, № 116: 551–555; Iwamura Y. (1998) Hierarchical somatosensory processing // Current Opinion in Neurobiology, № 8: 522–528.
. Визуально-тактильное распознавание формы было зафиксировано также в различных частях внутритеменной борозды (ил. 1) в теменной доле, находящейся непосредственно в коре головного мозга, которая играет важную роль в мультисенсорном восприятии [60] Grefkes C., Weiss P.H., Zilles K., Fink G.R. (2002) Crossmodal processing of object features in human anterior intraparietal cortex: An fMRI study implies equivalencies between humans and monkeys // Neuron, № 35: 173–184; Saito D.N., Okada T., Morita Y., Yonekura Y., Sadato N. (2003) Tactile-visual cross-modal shape matching: A functional MRI study // Cognitive Brain Research, № 17: 14–25; Stilla R., Sathian K. (2008).
.
Читать дальше