Нихиль Будума - Основы глубокого обучения

Здесь есть возможность читать онлайн «Нихиль Будума - Основы глубокого обучения» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2020, ISBN: 2020, Издательство: Манн, Иванов и Фербер, Жанр: economics, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Основы глубокого обучения: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Основы глубокого обучения»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Глубокое обучение — раздел машинного обучения, изучающий глубокие нейронные сети и строящий процесс получения знаний на основе примеров. Авторы рассказывают об основных принципах решения задач в глубоком обучении и способах внедрения его алгоритмов.

Основы глубокого обучения — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Основы глубокого обучения», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Ниже мы рассмотрим основные типы слоев, используемые в нейросетях с прямым распространением сигнала. Но для начала несколько важных замечаний.

1. Как мы уже говорили, слои нейронов между первым (входным) и последним (выходным) слоями называются скрытыми. Здесь в основном и происходят волшебные процессы, нейросеть пытается решить поставленные задачи. Раньше (как при распознавании рукописных цифр) мы тратили много времени на определение полезных свойств; эти скрытые слои автоматизируют процесс. Рассмотрение процессов в них может многое сказать о свойствах, которые сеть научилась автоматически извлекать из данных.

2. В этом примере у каждого слоя один набор нейронов, но это не необходимое и не рекомендуемое условие. Чаще в скрытых слоях нейронов меньше, чем во входном: так сеть обучается сжатому представлению информации. Например, когда глаза получают «сырые» пиксельные значения, мозг обрабатывает их в рамках границ и контуров. Скрытые слои биологических нейронов мозга заставляют нас искать более качественное представление всего, что мы воспринимаем.

3. Необязательно, чтобы выход каждого нейрона был связан с входами всех нейронов следующего уровня. Выбор связей здесь — искусство, которое приходит с опытом. Этот вопрос мы обсудим детально при изучении примеров нейросетей.

4. Входные и выходные данные — векторные представления. Например, можно изобразить нейросеть, в которой входные данные и конкретные пиксельные значения картинки в режиме RGB представлены в виде вектора (см. рис. 1.3). Последний слой может иметь два нейрона, которые соотносятся с ответом на задачу: [1, 0], если на картинке собака; [0, 1], если кошка; [1, 1], если есть оба животных; [0, 0], если нет ни одного из них.

Заметим, что, как и нейрон, можно математически выразить нейросеть как серию операций с векторами и матрицами. Пусть входные значение i-го слоя сети — вектор x = [ x 1 x 2… x n ]. Нам надо найти вектор y = [ y 1 y 2 … y m ], образованный распространением входных данных по нейронам. Мы можем выразить это как простое умножение матрицы, создав матрицу весов размера n × m и вектор смещения размера m . Каждый столбец будет соответствовать нейрону, причем j-й элемент сопоставлен весу соединения с j-м входящим элементом. Иными словами, y = ƒ ( W Tx + b), где функция активации применяется к вектору поэлементно. Эта новая формулировка очень пригодится, когда мы начнем реализовывать эти сети в программах.

Линейные нейроны и их ограничения

Большинство типов нейронов определяются функцией активации f , примененной к логиту logit z . Сначала рассмотрим слои нейронов, которые используют линейную функцию f(z) = az + b . Например, нейрон, который пытается подсчитать стоимость блюда в кафе быстрого обслуживания, будет линейным, a = 1 и b = 0. Используя f(z) = z и веса, эквивалентные стоимости каждого блюда, программа присвоит линейному нейрону на рис. 1.10 определенную тройку из бургеров, картошки и газировки, и он выдаст цену их сочетания.

Рис 110 Пример линейного нейрона Вычисления с линейными нейронами просты - фото 13

Рис. 1.10. Пример линейного нейрона

Вычисления с линейными нейронами просты, но имеют серьезные ограничения. Несложно доказать, что любая нейросеть с прямым распространением сигнала, состоящая только из таких нейронов, может быть представлена как сеть без скрытых слоев. Это проблема: как мы уже говорили, именно скрытые слои позволяют узнавать важные свойства входных данных. Чтобы научиться понимать сложные отношения, нужно использовать нейроны с определенного рода нелинейностью.

Нейроны с сигмоидой, гиперболическим тангенсом и усеченные линейные

На практике для вычислений применяются три типа нелинейных нейронов. Первый называется сигмоидным и использует функцию:

Интуитивно это означает что если логит очень мал выходные данные - фото 14

Интуитивно это означает, что, если логит очень мал, выходные данные логистического нейрона близки к 0. Если логит очень велик — то к 1. Между этими двумя экстремумами нейрон принимает форму буквы S, как на рис. 1.11.

Рис 111 Выходные данные сигмоидного нейрона с переменной z Нейроны - фото 15

Рис. 1.11. Выходные данные сигмоидного нейрона с переменной z

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Основы глубокого обучения»

Представляем Вашему вниманию похожие книги на «Основы глубокого обучения» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Светлана Маркова - Основы быстрого обучения
Светлана Маркова
Отзывы о книге «Основы глубокого обучения»

Обсуждение, отзывы о книге «Основы глубокого обучения» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x