Нихиль Будума - Основы глубокого обучения

Здесь есть возможность читать онлайн «Нихиль Будума - Основы глубокого обучения» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2020, ISBN: 2020, Издательство: Манн, Иванов и Фербер, Жанр: economics, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Основы глубокого обучения: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Основы глубокого обучения»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Глубокое обучение — раздел машинного обучения, изучающий глубокие нейронные сети и строящий процесс получения знаний на основе примеров. Авторы рассказывают об основных принципах решения задач в глубоком обучении и способах внедрения его алгоритмов.

Основы глубокого обучения — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Основы глубокого обучения», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Оказывается, при θ = [−24 3 4] T модель машинного обучения способна сделать верное предсказание для каждого замера:

Оптимальный вектор параметров θ устанавливает классификатор так чтобы можно - фото 3

Оптимальный вектор параметров θ устанавливает классификатор так, чтобы можно было сделать как можно больше корректных предсказаний. Обычно есть множество (иногда даже бесконечное) возможных оптимальных вариантов θ. К счастью, в большинстве случаев альтернативы настолько близки, что разницей между ними можно пренебречь. Если это не так, можно собрать больше данных, чтобы сузить выбор θ.

Звучит разумно, но есть много очень серьезных вопросов. Во-первых, откуда берется оптимальное значение вектора параметров θ? Решение этой задачи требует применения метода оптимизации . Оптимизаторы стремятся повысить производительность модели машинного обучения, последовательно изменяя ее параметры, пока погрешность не станет минимальной.

Мы подробнее расскажем об обучении векторов параметров в главе 2, описывая процесс градиентного спуска [4] Bubeck S. Convex optimization: Algorithms and complexity // Foundations and Trends® in Machine Learning. 2015. Vol. 8. No. 3–4. Pp. 231–357. . Позже мы постараемся найти способы еще больше увеличить эффективность этого процесса.

Во-вторых, очевидно, что эта модель (линейного персептрона) имеет ограниченный потенциал обучения. Например, случаи распределения данных на рис. 1.5 нельзя удобно описать с помощью линейного персептрона.

Рис 15 По мере того как данные принимают более комплексные формы нам - фото 4

Рис. 1.5. По мере того как данные принимают более комплексные формы, нам становятся необходимы более сложные модели для их описания

Но эти ситуации — верхушка айсберга. Когда мы переходим к более комплексным проблемам — распознаванию объектов или анализу текста, — данные приобретают очень много измерений, а отношения, которые мы хотим описать, становятся крайне нелинейными. Чтобы отразить это, в последнее время специалисты по машинному обучению стали строить модели, напоминающие структуры нашего мозга. Именно в этой области, обычно называемой глубоким обучением, ученые добились впечатляющих успехов в решении проблем компьютерного зрения и обработки естественного языка. Их алгоритмы не только значительно превосходят все остальные, но даже соперничают по точности с достижениями человека, а то и превосходят их.

Нейрон

Нейрон — основная единица мозга. Небольшой его фрагмент, размером примерно с рисовое зернышко, содержит более 10 тысяч нейронов, каждый из которых в среднем формирует около 6000 связей с другими такими клетками [5] Restak R. M., Grubin D. The Secret Life of the Brain. Joseph Henry Press, 2001. . Именно эта громоздкая биологическая сеть позволяет нам воспринимать мир вокруг. В этом разделе наша задача — воспользоваться естественной структурой для создания моделей машинного обучения, которые решают задачи аналогично. По сути, нейрон оптимизирован для получения информации от «коллег», ее уникальной обработки и пересылки результатов в другие клетки. Процесс отражен на рис. 1.6. Нейрон получает входную информацию по дендритам — структурам, напоминающим антенны. Каждая из входящих связей динамически усиливается или ослабляется на основании частоты использования (так мы учимся новому!), и сила соединений определяет вклад входящего элемента информации в то, что нейрон выдаст на выходе. Входные данные оцениваются на основе этой силы и объединяются в клеточном теле . Результат трансформируется в новый сигнал, который распространяется по клеточному аксону к другим нейронам.

Рис 16 Функциональное описание биологической структуры нейрона Мы можем - фото 5

Рис. 1.6. Функциональное описание биологической структуры нейрона

Мы можем преобразовать функциональное понимание работы нейронов в нашем мозге в искусственную модель на компьютере. Последняя описана на рис. 1.7, где применен подход, впервые введенный в 1943 году Уорреном Маккаллоу и Уолтером Питтсом [6] McCulloch W. S., Pitts W. A logical calculus of the ideas immanent in nervous activity // The Bulletin of Mathematical Biophysics. 1943. Vol. 5. No. 4. Pp. 115–133. . Как и биологические нейроны, искусственный получает некоторый объем входных данных — x 1, x 2, …, x n , каждый элемент которых умножается на определенное значение веса — w 1, w 2, …, w n . Эти значения, как и раньше, суммируются, давая логит нейрона: Основы глубокого обучения - изображение 6. Часто он включает также смещение (константа, здесь не показана). Логит проходит через функцию активации f , образуя выходное значение y = f(z) . Это значение может быть передано в другие нейроны.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Основы глубокого обучения»

Представляем Вашему вниманию похожие книги на «Основы глубокого обучения» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Светлана Маркова - Основы быстрого обучения
Светлана Маркова
Отзывы о книге «Основы глубокого обучения»

Обсуждение, отзывы о книге «Основы глубокого обучения» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x