Никита Шахулов - Диверсификация методов когнитивных вычислений глубокого обучения в кибер-криминалистику

Здесь есть возможность читать онлайн «Никита Шахулов - Диверсификация методов когнитивных вычислений глубокого обучения в кибер-криминалистику» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. ISBN: , Жанр: Справочники, Прочая околокомпьтерная литература, Руководства, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Диверсификация методов когнитивных вычислений глубокого обучения в кибер-криминалистику: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Диверсификация методов когнитивных вычислений глубокого обучения в кибер-криминалистику»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Сегодня мир чаще, чем когда-либо, испытывает рост кибератак во всех сферах нашей повседневной жизни. Эта ситуация превратила борьбу с киберпреступлениями в повседневную борьбу как для отдельных лиц, так и для организаций. Кроме того, эта борьба усугубляется тем фактом, что сегодняшние киберпреступники сделали шаг вперед и могут использовать сложные методы кибератак.

Диверсификация методов когнитивных вычислений глубокого обучения в кибер-криминалистику — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Диверсификация методов когнитивных вычислений глубокого обучения в кибер-криминалистику», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Диверсификация методов когнитивных вычислений глубокого обучения в кибер-криминалистику

Никита Ренарьевич Шахулов

© Никита Ренарьевич Шахулов, 2021

ISBN 978-5-0053-5633-8

Создано в интеллектуальной издательской системе Ridero

Абстрактный

Сегодня мир чаще, чем когда-либо, испытывает рост кибератак во всех сферах нашей повседневной жизни. Эта ситуация превратила борьбу с киберпреступлениями в повседневную борьбу как для отдельных лиц, так и для организаций. Кроме того, эта борьба усугубляется тем фактом, что сегодняшние киберпреступники сделали шаг вперед и могут использовать сложные методы кибератак. Некоторые из этих приемов незначительны и незаметны по своей природе и часто маскируются за фасадом подлинных запросов и команд. Чтобы бороться с этой угрозой, особенно после инцидента, связанного с безопасностью, Специалисты по кибербезопасности, а также судебные следователи всегда вынуждены анализировать большие и сложные пулы данных, также известные как большие данные, в попытке выявить потенциальные цифровые доказательства (PDE), которые можно использовать для поддержки судебных разбирательств. Собранные PDE затем могут быть использованы, чтобы помочь исследователям прийти к определенным выводам и / или решениям. В случае кибер-криминалистики процесс даже усложняется для следователей тем фактом, что большие данные часто поступают из нескольких источников и имеют разные форматы файлов. У судебных следователей часто меньше времени и средств, чтобы справиться с возросшими требованиями, когда дело доходит до анализа таких больших объемов сложных данных для судебно-медицинских целей. Именно по этой причине авторы этой статьи осознали, что глубокое обучение (DL), которое является подмножеством искусственного интеллекта (AI), имеет очень разные варианты использования в области киберпреступности, и даже если многие люди могут возразить, что это не беспрецедентное решение, оно может помочь улучшить борьбу с киберпреступностью. Таким образом, в этом документе предлагается общая структура для разделения методов когнитивных вычислений DL в Cyber Forensics (CF), далее именуемую DLCF Framework. DL использует некоторые методы машинного обучения для решения проблем с помощью нейронных сетей, имитирующих процесс принятия решений человеком. Основываясь на этих основаниях, DL может радикально изменить сферу CF различными способами, а также предоставить решения для судебных следователей. Такие решения могут варьироваться от снижения предвзятости в судебно-медицинских расследованиях до оспаривания того, какие доказательства считаются допустимыми в суде или любом гражданском слушании, и многое другое.

Ключевые слова:киберпреступления, глубокое обучение, искусственный интеллект, расследования, кибератаки, киберпреступления, фреймворк.

1. Введение

Технологические революции, компьютерная интеграция и достижения в Интернете, засвидетельствованные после промышленной революции, стали основным продуктом и сенсацией во всех аспектах нашей повседневной жизни, как выражено в Refs. [1, 2]. Кроме того, люди стали зависимыми от информационных и коммуникационных технологий (ИКТ) и цифровых устройств, учитывая, что преимущества этих устройств помогли сформировать наши общества. Это стало возможным благодаря постоянному присутствию цифровой информации и изменениям в образе мышления и действий людей [3].

Более того, большинство методов компьютерной интеграции стали свидетелями появления многих вычислительных дисциплин, которые привели к повышению эффективности. Одной из примечательных областей, которая изменила восприятие поведения компьютера и того, как работают машины, является дисциплина глубокого обучения (DL), которая является подмножеством искусственного интеллекта (AI). DL позволяет применять многослойные нейронные сети в настройках машин для решения некоторых желаемых задач [4]. Фактически, DL был визуализирован как современный подход, который может предоставить множество точных выводов, которые также изменили способ принятия интеллектуальных решений компьютерами [5]. Тем не менее, Cyber Forensic Science (CFS), который представляет собой научный процесс расследования, а также извлечения и доказательства фактов в суде или гражданских слушаниях, претерпел множество изменений, и многие методы использовались в подходах к обнаружению инцидентов [6, 7]. В результате это исследование пытается изучить динамику расхождения методов когнитивных вычислений DL в Cyber Forensics (CF), чтобы понять эффективность.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Диверсификация методов когнитивных вычислений глубокого обучения в кибер-криминалистику»

Представляем Вашему вниманию похожие книги на «Диверсификация методов когнитивных вычислений глубокого обучения в кибер-криминалистику» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Никита Шахулов - Этичный хакер
Никита Шахулов
Отзывы о книге «Диверсификация методов когнитивных вычислений глубокого обучения в кибер-криминалистику»

Обсуждение, отзывы о книге «Диверсификация методов когнитивных вычислений глубокого обучения в кибер-криминалистику» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x