Если подобное использование ориентиров кажется «слишком субъективным», вспомним о цели нашего измерения в данном случае. Что такое ущерб бренду, как не восприятие? Ведь мы оцениваем не физическое явление, а мнения людей. Такая оценка невозможна без понимания того, что ущерб бренду — это, по определению, изменение представлений потребителей. И вы определяете размеры этого ущерба, опрашивая потребителей. С другой стороны, можно проследить, что покупатели делают со своими деньгами, наблюдая за тем, как неблагоприятное событие повлияло на курс акций или объем продаж. В любом случае ущерб бренду оказывается измеренным.
Кое-какие тонкости: байесовская инверсия для диапазонов
Как уже упоминалось, в основе многих рисунков и таблиц, составленных мной для этой книги, лежит байесовская инверсия. Решая большинство статистических задач и задач по измерению, мы спрашиваем: «Какова вероятность того, что истинное значение данной величины равно X при условии, что я видел то-то и то-то?» Но вообще-то легче ответить на вопрос: «Если истинное значение равно X, то какова вероятность увидеть то, что я видел?» Байесовская инверсия позволяет нам ответить на первый вопрос, ответив сначала на второй. Нередко ответить на последний бывает намного легче.
Сразу хочу предупредить, что далее нам придется коснуться специальных вопросов. Если вы захотите пропустить это описание, то электронную таблицу для байесовской инверсии, составленную в том числе и на основе приводимого ниже примера, вы найдете на вспомогательном веб-сайте: www.howtomeasureanything.com, выбрав связь «Bayesian Inversion» («Байесовская инверсия»). Я постарался сделать это описание как можно проще. Расчеты могут показаться довольно длинными, но я свел их к минимуму, перейдя, где это было возможно, сразу к функциям Excel.
Итак, предположим, что у нас есть магазин автозапчастей и возникла необходимость определить коэффициент удержания покупателей. Мы подозреваем о существовании проблемы с удовлетворенностью потребителей. Калиброванная оценка процента покупателей, которые захотят сделать в нашем магазине еще одну покупку, составляет 75–90 % (доверительный интервал, как обычно, 90-процентный). Конечно, желательно, чтобы этот показатель был как можно выше, но если он не достигнет 80 %, нам придется принять ряд весьма дорогостоящих корректирующих мер. Расчетная стоимость этой информации намного превышает 500 тыс. дол., но мы, естественно, постараемся минимизировать затраты на проведение опросов потребителей, переложив часть их на плечи своих покупателей. Помня о поэтапном определении интересующего нас показателя, выберем сначала всего 20 потребителей и посмотрим, какую информацию удастся получить. Если из этой выборки 14 человек скажут, что придут к нам за покупками еще, то как мы изменим первоначальный диапазон? Помните, что типичные параметрические, небайесовские методы не позволяют учитывать его при расчетах.
Начнем с более простого вопроса: если 90 % покупателей скажут, что вновь придут за запчастями в наш магазин, то сколько человек из 20 сказали бы то же самое? Ответ очевиден — 90 % от 20, или 18 человек. Если бы таких людей было 80 %, то в нашей выборке их оказалось бы 16. Конечно, мы знаем, что совершенно случайно в числе 20 выбранных нами покупателей желающих вернуться в магазин может оказаться 15 или даже 20 человек. Поэтому нужно узнать не только ожидаемый результат, но и вероятность его получения.
Чтобы определить вероятность получения конкретного результата, используем специальное, уже упоминавшееся распределение, которое называется биноминальным. Напомним, что биноминальное распределение позволяет рассчитать вероятность определенного числа «попаданий» при условии проведения определенного числа попыток и того, что в каждой попытке может быть только один результат. Например, при подбрасывании монетки «попаданием» можно назвать выпадение орла, попытками — подбрасывания, а шанс попадания составляет 50 %. Предположим, например, что мы хотим узнать вероятность того, что при 10 подбрасываниях орел выпадет четыре раза при вероятности его выпадения 50 %. Вместо того, чтобы объяснять всю формулу и теорию комбинаторики, я сразу перейду к формуле программы Excel. В Excel мы просто запишем:
=binomdist(число попаданий, число попыток, вероятность попадания, 0).
Взяв числа из нашего примера с подбрасыванием монеты, запишем: binomdist(4, 10, 0,5, 0), и Excel даст нам значение 20,5 % (ноль в конце говорит о том, что нас интересует вероятность только этого конкретного результата. Записав вместо нуля единицу, получим накопленную вероятность, то есть вероятность указанного или меньшего числа попаданий). Данный результат означает, что есть 20,5-процентная вероятность того, что в случае 10-кратного подбрасывания монеты орел выпадет точно четыре раза.
Читать дальше