В то же время существуют способы устранения тех недостатков, которые действительно имеются у описываемого метода. Ведь он опирается на субъективные суждения, что создает возможности для различного типа искажений, обсуждавшихся ранее. Вот некоторые приемы, позволяющие избежать искажений при использовании инстинктивного байесовского подхода.
Неоднородный бенчмаркинг и его использование для оценки «ущерба бренду»
Все, что вам нужно представить в количественной форме, можно каким-то образом измерить. В любом случае это даст лучший результат, чем если не проводить измерений вовсе.
Закон Гилба
Одна из трудностей, с которыми столкнулись эксперты в задаче по определению среднего веса леденца (см. главу 9), заключалась в невозможности сравнить его с весом другого объекта для наглядности. Один эксперт заявил: «Не представляю себе, как может выглядеть один грамм леденцов», а другой отметил: «Я вообще плохо определяю на глаз вес маленьких предметов».
А что, если я подсказал бы им: визитная карточка весит примерно 1 г, 10-центовая монета — 2,3 г, а большая скрепка для бумаги — ровно 1 г? Помогло бы это сузить диапазоны предлагаемых ими значений? Кое-кому это было очень полезно, особенно если первоначально указанный ими диапазон был достаточно широким. Получив мою информацию, один человек, который сначала считал, что верхняя граница диапазона может составлять 20 г, сразу же опустил ее до 3 г. Люди корректируют свои оценки потому, что, как мы теперь знаем, все они, особенно калиброванные оценщики, являются интуитивными байесианцами. Они склонны довольно рационально обновлять первоначальную информацию, которой обладали, учитывая новые сведения, даже если те носят качественный характер или имеют к оцениваемому объекту отдаленное отношение.
Я называю этот метод обновления прежнего знания, основанный на сравнении с другими, непохожими, но неким образом связанными с объектом предметами, «неоднородным бенчмаркингом». Когда люди не могут представить себе, как выглядит какая-то величина, подобная информация о масштабе, пусть даже относящаяся к другим предметам, может оказаться очень полезной. При оценке возможного спроса на ваш продукт в новом городе вам пригодятся данные о спросе на него в других городах и даже сравнительные данные об экономическом уровне разных городов.
ПРЕДСТАВЛЕНИЕ О ПОРЯДКЕ ВЕЛИЧИН
Неоднородный бенчмаркинг — метод, при котором калиброванным экспертам, оценивающим неизвестную величину, предоставляют в качестве ориентиров другие количественные показатели, даже если связь между ними и кажется отдаленной.
Пример: прогнозирование продаж нового продукта на основе информации о сбыте других товаров или аналогичных конкурентных продуктов.
Неоднородный бенчмаркинг проводился, в частности, в нашем примере с информационной безопасностью. В главах 4–6 я показал, как можно моделировать разные риски для безопасности, используя диапазоны значений и вероятности. Но похоже, что область информационной безопасности — неисчерпаемый источник как курьезных представлений о неизмеряемости многих вещей вообще, так и примеров подобных «нематериальных» объектов. Одна из таких неизмеримых величин — «мягкие» затраты, которыми чреваты определенные катастрофические события.
Кому не раз доводилось сталкиваться с сопротивлением проведению измерений в области информационной безопасности, так это Питеру Типпетту из компании Cybertrust. Работая над своим дипломом и кандидатской диссертацией по биохимии, он сделал то, что не пришло в голову никому из его сокурсников: создал первую антивирусную программу, получившую впоследствии известность как Norton Antivirus. Затем Типпетт провел ряд исследований с участием сотен организаций с целью сравнительной оценки рисков для разных угроз безопасности. Казалось бы, мнению такого человека об измеряемости безопасности, безусловно, можно доверять. Тем не менее у многих специалистов в сфере IT сама идея проведения подобных измерений, похоже, вызывает острое неприятие.
Типпетт предложил свой подход к решению проблемы, состоящий в том, чтобы задаться вопросом: «Насколько ужасно будет, если..?» Согласно такому подходу, специалисты по информационной безопасности решают, существует ли малейшая вероятность наступления такого катастрофического события, которое необходимо предотвратить любой ценой. Типпетт замечает: «Поскольку катастрофа может произойти в любой области, превентивные меры должны приниматься везде. Думать о приоритетах здесь не приходится». Он приводит следующий конкретный пример. «Одна компания из списка „Fortune 20“ выделила на реализацию 35 своих проектов в сфере информационных технологий 100 млн дол. Руководитель ее информационной службы захотел узнать, какие из проектов важнее, и получил от своих подчиненных ответ, что этого никто не знает и знать не может».
Читать дальше