James W. Brown - Principles of Microbial Diversity

Здесь есть возможность читать онлайн «James W. Brown - Principles of Microbial Diversity» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Principles of Microbial Diversity: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Principles of Microbial Diversity»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Every speck of dust, drop of water, and grain of soil and each part of every plant and animal contain their own worlds of microbes. Designed as a key text for upper-level undergraduates majoring in microbiology, genetics, or biology,
provides a solid curriculum for students to explore the enormous range of biological diversity in the microbial world. Within these richly illustrated pages, author and professor James W. Brown provides a practical guide to microbial diversity from a phylogenetic perspective in which students learn to construct and interpret evolutionary trees from DNA sequences. He then offers a survey of the «tree of life» that establishes the necessary basic knowledge about the microbial world. Finally, the author draws the student's attention to the universe of microbial diversity with focused studies of the contributions that specific organisms make to the ecosystem.
Principles of Microbial Diversity

Principles of Microbial Diversity — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Principles of Microbial Diversity», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

We live immersed in an infinite sea of the infinitesimal. Let’s have a look.

1

What Is Microbial Diversity?

Facets of microbial diversity

What is diversity? How exactly are organisms either similar to or different from each other? This seems like an easy question in the macroscopic world, but what about microbes?

Morphological diversity

Microbes are often divided by shape into rods, cocci, and spirals. Although these are the most common cell shapes, bacterial and archaeal cells also come in a wide range of other shapes: filaments (branched or unbranched), irregular, pleomorphic (different shapes under different conditions or even in the same culture), star-shaped, stalked, and many, many others. Haloquadratum is a flat, square organism, just like a bathroom tile (Fig. 1.1).

Individual cells of whatever shape can be found in a variety of multicellular arrangements, from simple pairs and tetrads to multicellular filaments, sheets, rosettes, and true multicellular organisms. Many species form highly structured multispecies mats that resemble the tissues of animals and plants that carry out complex biochemical transformations (Fig. 1.2).

Figure 11The tileshaped halophilic archaeon Haloquadratum walsbyi Source - фото 4

Figure 1.1The tile-shaped halophilic archaeon Haloquadratum walsbyi . (Source: Wikimedia Commons.) doi:10.1128/9781555818517.ch1.f1.1

Figure 12Section of a stratified microbial mat from Guerrero Negro Baja - фото 5

Figure 1.2Section of a stratified microbial mat from Guerrero Negro, Baja California. (Copyright 2007, American Society for Microbiology. Photo by John R. Spear and Norman R. Pace.) doi:10.1128/9781555818517.ch1.f1.2

Most bacteria and archaea measure 1 to 5 µm, but they range from 0.1 μm in thickness to over a millimeter. At the low end, it is hard to understand how everything that is needed for life could fit into the cell. At the high end, they can be easily seen without a microscope (Fig. 1.3).

Structural diversity

Many bacteria have “typical” gram-positive (single membrane, thick cell wall) or gram-negative (double membrane, thin cell wall) cell envelopes. However, there is wide variation even within these two major types. Many gram-positive bacteria have an outer membrane, made of mycolic acids rather than glycerol-phosphate esters. Many gram-negative bacteria lack the lipopolysaccharide layer. Many archaea and bacteria (both gram positive and gram negative) have an orderly protein coat, the S-layer (Fig. 1.4). In bacteria, cell walls are composed of peptidoglycan, but there is a surprising range of chemical variations within this type of material. Archaea do not have peptidoglycan cell walls, although some archaeal cell walls contain a related material, pseudomurein.

Figure 13The bacterium Epulopiscium fishelsoni ca 500 μm long and four - фото 6

Figure 1.3The bacterium Epulopiscium fishelsoni (ca. 500 μm long) and four cells of the protist Paramecium (ca. 100 μm long). (Courtesy of Esther Angert.) doi:10.1128/9781555818517.ch1.f1.3

Microbes have a wide range of external structures: flagella, pili, fibrils, holdfasts, stalks, buds, capsules, sheaths, and so on. They also have a wide variety of internal structures such as spores, daughter cells, thylakoids, mesosomes, and the nucleoid. In reality, microbial cells are just as structurally organized, and diverse, as are eukaryotic cells.

Figure 14A negativestain electron micrograph of the Slayer of Pyrobaculum - фото 7

Figure 1.4A negative-stain electron micrograph of the S-layer of Pyrobaculum aerophilum . Scale bar, 200 nm. (Courtesy of Reinhard Rachel.) doi:10.1128/9781555818517.ch1.f1.4

Metabolic diversity

Macroscopic eukaryotes are not metabolically diverse; they are either chemoheterotrophic (e.g., animals) or photoautotrophic (e.g., plants). Bacteria and archaea have a much broader range of energy and carbon sources, which can be generally divided into four broad types, chemoheterotrophs, chemoautotrophs, photoheterotrophs, and photoautotrophs.

Chemoheterotrophs obtain both carbon and energy from organic compounds. Some organisms can use a wide range of organic compounds and can either oxidize or ferment them. Others can use only a very narrow range of organic compounds and process them in a specific way. Saprophytes and pathogenic microbes are examples of this group.

Chemoautotrophs obtain cell carbon by fixing CO 2. Energy is obtained from inorganic chemical reactions such as the oxidation or reduction of sulfur or nitrogen compounds, iron, hydrogen, etc. These organisms do not need organic compounds for either energy or cell carbon. Sulfur-oxidizing bacteria and methane-producing archaea are examples of this group.

Photoheterotrophs obtain cell carbon from organic compounds, but energy is harvested from light. Halophilic archaea and most purple photosynthetic bacteria are examples of this group.

Photoautotrophs (photosynthetic) obtain cell carbon by fixing CO 2. Energy is obtained from light. These organisms do not need organic compounds for either energy or cell carbon. Most cyanobacteria and some purple photosynthetic bacteria are examples of this group.

Ecological diversity

Microbes live in an amazing range of habitats, from laboratory distilled-water carboys, through freshwater and marine environments, to saturated brines like the Great Salt Lake or the Dead Sea. They grow at temperatures of −5°C to over 118°C; Pyrodictium cultures are sometimes incubated in autoclaves! Organisms are known to grow at pH 0 (0.5 M sulfuric acid) and at pH 11 (Drano). Very often, these extremes are combined: Acidianus grows in 0.1 M sulfuric acid at 80°C! Some bacteria live in the water droplets that make up the clouds, and others live in deep-underground aquifers or deep-sea sediments. Many microbes live in intimate symbiosis with other creatures, in complex communities, or as permanent intracellular “guests.”

In fact, if you are on or around Earth and find liquid water, there is almost certainly something living in it (Fig. 1.5).

Figure 15Moose Pool Yellowstone National Park pH 2 80C - фото 8

Figure 1.5Moose Pool, Yellowstone National Park, pH ~2, 80°C. doi:10.1128/9781555818517.ch1.f1.5

Behavioral diversity

It may seem odd to consider the behavior of microscopic organisms, but they do have behavior. Motility and taxis are one form of behavior, both of which come in a variety of forms, from the phototactic Chlorobium bacteria that use gas vacuoles and symbiosis with motile bacteria to adjust their place in the water column (Fig. 1.6) to the chemotactic Rhizobium bacteria that sense and swim (via flagella) toward chemical signals sent by receptive plant roots. Magnetotactic bacteria have a built-in magnetic compass that allows them to use Earth’s magnetic field for orientation.

Figure 16 Chlorobium symbiotic consortium Reprinted from Wanner G Vogl K - фото 9

Figure 1.6 Chlorobium symbiotic consortium. (Reprinted from Wanner G, Vogl K, Overmann J, J Bacteriol 190:3721–3730, 2008, with permission.) doi:10.1128/9781555818517.ch9.f9.10

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Principles of Microbial Diversity»

Представляем Вашему вниманию похожие книги на «Principles of Microbial Diversity» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Principles of Microbial Diversity»

Обсуждение, отзывы о книге «Principles of Microbial Diversity» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x