Anthony Kelly - Crystallography and Crystal Defects

Здесь есть возможность читать онлайн «Anthony Kelly - Crystallography and Crystal Defects» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Crystallography and Crystal Defects: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Crystallography and Crystal Defects»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

The classic book that presents a unified approach to crystallography and the defects found within crystals, revised and updated This new edition of
explains the modern concepts of crystallography in a clear, succinct manner and shows how to apply these concepts in the analyses of point, line and planar defects in crystalline materials. 
Fully revised and updated, this book now includes:
Original source references to key crystallographic terms familiar to materials scientists Expanded discussion on the elasticity of cubic materials New content on texture that contains more detail on Euler angles, orientation distribution functions and an expanded discussion on examples of textures in engineering materials Additional content on dislocations in materials of symmetry lower than cubic An expanded discussion of twinning which includes the description and classification of growth twins The inclusion and explanation of results from atomistic modelling of twin boundaries Problem sets with new questions, detailed worked solutions, supplementary lecture material and online computer programs for crystallographic calculations. Written by authors with extensive lecturing experience at undergraduate level,
continues to take its place as the core text on the topic and provides the essential resource for students and researchers in metallurgy, materials science, physics, chemistry, electrical, civil and mechanical engineering.

Crystallography and Crystal Defects — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Crystallography and Crystal Defects», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Inspection of the drawing of the arrangement of the ions in a crystal of caesium chloride, CsCl, in Figure 3.17 shows that the lattice is an array of points such that a = b = c , α = β = γ = 90°, so that the unit cell is a cube. There is one caesium ion and one chlorine ion associated with each lattice point. If we take the origin at the centre of a caesium ion, then there is one caesium ion in the unit cell with coordinates (0, 0, 0) and one chlorine ion with coordinates Crystallography and Crystal Defects - изображение 27. A projection along the z ‐axis is shown in Figure 1.3. It must be remembered that the caesium ions at the corners of the unit cell project on top of one another; thus, ions at elevations 0 and 1 are superimposed, as indicated in Figure 1.3. Since translational symmetry dictates that if there is an ion at ( x , y , 0), there must be an ion with exactly the same environment at ( x , y , 1), the ions at elevation 1 along the z ‐axis can be omitted by convention. It is also standard practice when drawing projections of crystal structures not to indicate the elevations of atoms or ions if they are 0.

Figure 13The numbers give the elevations of the centres of the atoms along - фото 28

Figure 1.3The numbers give the elevations of the centres of the atoms, along the z ‐axis, taking the lattice parameter c as the unit of length

It is apparent from this drawing of the crystal structure of caesium chloride that the coordination number for each caesium ion and each chlorine ion is eight, each ion having eight of the other kind of ion as neighbours. The separation of these nearest neighbours, d , is easily seen to be given by:

(1.1) since a b c The number of units of the formula CsCl per unit cell is - фото 29

since a = b = c .

The number of units of the formula CsCl per unit cell is clearly 1.

1.2 Lattice Planes and Directions

A rectangular mesh of a hypothetical two‐dimensional crystal with mesh parameters a and b of very different magnitude is shown in Figure 1.4. Note that the parallel mesh lines OB, O′B′, O″B″, and so on all form part of a set and that the spacing of all lines in the set is quite regular; this is similar for the set of lines parallel to AB: A′B′, A″B″ and so on. The spacing of each of these sets is determined only by aand b(and the angle between aand b,which in this example is 90°). Also, the angle between these two sets depends only on the ratio of a to b, where a and b are the magnitudes of aand b, respectively. If external faces of the crystal formed parallel to O″B and to AB, the angle between these faces would be uniquely related to the ratio a : b . Furthermore, this angle would be independent of how large these faces were (see Figure 1.5). This was recognized by early crystallographers, who deduced the existence of the lattice structure of crystals from the observation of the constancy of angles between corresponding faces. This law of constancy of angle states: In all crystals of the same substance the angle between corresponding faces has a constant value .

Figure 14A rectangular mesh of a hypothetical twodimensional crystal with - фото 30

Figure 1.4A rectangular mesh of a hypothetical two‐dimensional crystal with mesh parameters a and b of very different magnitude

Figure 15Demonstration of the law of constancy of angles between faces of - фото 31

Figure 1.5Demonstration of the law of constancy of angles between faces of crystals: the angle φ between the faces is independent of the size of the faces

The analogy between lines in a mesh and planes in a crystal lattice is very close. Crystal faces form parallel to lattice planes and important lattice planes contain a high density of lattice points. Lattice planes form an infinite regularly spaced set which collectively passes through all points of the lattice. The spacing of the members of the set is determined only by the lattice parameters and axial angles, and the angles between various lattice planes are determined only by the axial angles and the ratios of the lattice parameters to one another.

Prior to establishing a methodology for designating a set of lattice planes, it is expedient to consider how directions in a crystal are specified. A direction is simply a line in the crystal. Select any two points on the line, say P and P′. Choose one as the origin, say P ( Figure 1.6). Write the vector rbetween the two points in terms of translations along the x ‐, y ‐ and z ‐axes so that:

(1.2) Crystallography and Crystal Defects - изображение 32

where a, band care vectors along the x ‐, y ‐ and z ‐axes, respectively, and have magnitudes equal to the lattice parameters ( Figure 1.6). The direction is then denoted as [ uvw ] – always cleared of fractions and reduced to its lowest terms. The triplet of numbers indicating a direction is always enclosed in square brackets. Some examples are given in Figure 1.7. Negative values of u , v and w are indicated in this figure by a bar over the appropriate index.

Figure 16A vector rwritten as the sum of translations along the x y and z - фото 33

Figure 1.6A vector rwritten as the sum of translations along the x ‐, y ‐ and z ‐axes

Figure 17Examples of various lattice vectors in a crystal If u v and w are - фото 34

Figure 1.7Examples of various lattice vectors in a crystal

If u , v and w are integers and the origin P is chosen at a lattice point, then P′ is also a lattice point and the line PP′ produced is a row of lattice points. Such a line is called a rational line, just as a plane of lattice points is called a rational plane.

We designate a set of lattice planes as follows (see Figure 1.8). Let one member of the set meet the chosen axes, x , y , z at distances from the origin of A, B and C, respectively. We can choose the origin to be a lattice point. Vectors a, band cthen define the distances between adjacent lattice points along the x ‐, y ‐ and z ‐axes, respectively. The Miller 3indices ( hkl ) of the set of lattice planes are then defined in terms of the intercepts A, B and C so that the length OA = a / h , where a is the magnitude of a; likewise, OB = b / k and OC = c / l .

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Crystallography and Crystal Defects»

Представляем Вашему вниманию похожие книги на «Crystallography and Crystal Defects» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Crystallography and Crystal Defects»

Обсуждение, отзывы о книге «Crystallography and Crystal Defects» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x