Anthony Kelly - Crystallography and Crystal Defects

Здесь есть возможность читать онлайн «Anthony Kelly - Crystallography and Crystal Defects» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Crystallography and Crystal Defects: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Crystallography and Crystal Defects»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

The classic book that presents a unified approach to crystallography and the defects found within crystals, revised and updated This new edition of
explains the modern concepts of crystallography in a clear, succinct manner and shows how to apply these concepts in the analyses of point, line and planar defects in crystalline materials. 
Fully revised and updated, this book now includes:
Original source references to key crystallographic terms familiar to materials scientists Expanded discussion on the elasticity of cubic materials New content on texture that contains more detail on Euler angles, orientation distribution functions and an expanded discussion on examples of textures in engineering materials Additional content on dislocations in materials of symmetry lower than cubic An expanded discussion of twinning which includes the description and classification of growth twins The inclusion and explanation of results from atomistic modelling of twin boundaries Problem sets with new questions, detailed worked solutions, supplementary lecture material and online computer programs for crystallographic calculations. Written by authors with extensive lecturing experience at undergraduate level,
continues to take its place as the core text on the topic and provides the essential resource for students and researchers in metallurgy, materials science, physics, chemistry, electrical, civil and mechanical engineering.

Crystallography and Crystal Defects — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Crystallography and Crystal Defects», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(1.21) Crystallography and Crystal Defects - изображение 72

where u , v , w are positive or negative integers, or equal to zero. Inspection of Figure 1.11shows that to use this description we must be careful to choose a, band cso as to include all lattice points. We do this by, say, making athe shortest vector between lattice points in the lattice, or one of several shortest ones. We then choose bas the shortest not parallel to aand cas the shortest not coplanar with aand b. Thus a, band cdefine a primitive unit cell of the lattice in the same sense as in Section 1.1. Only one lattice point is included within the volume a· [ b× c], 7which is the volume of the primitive unit cell; under these circumstances a, band care called the lattice translation vectors.

Figure 111Translation symmetry in a crystal 142 Rotational Symmetry If - фото 73

Figure 1.11Translation symmetry in a crystal

1.4.2 Rotational Symmetry

If one stood at the point marked H in Figure 1.1a and regarded the surroundings in a particular direction, say that indicated by one of the arrows, then on turning through an angle of 60° = 360°/6 the outlook would be identical. We say an axis of sixfold rotational symmetry passes normal to the paper through the point H. Similarly, at O′ an axis of threefold symmetry passes normal to the paper, since an identical outlook is found after a rotation of 360°/3 = 120°. A crystal possesses an n ‐fold axis of rotational symmetry if it coincides with itself upon rotation about the axis of 360°/ n = 2 π / n radians. In crystals, axes of rotational symmetry with values of n equal to one, two, three, four and six are the only ones found which are compatible with translational symmetry. These correspond to repetition every 360°, 180°, 120°, 90° and 60° and are called monad, diad, triad, tetrad and hexad axes, respectively. The reasons for these limitations on the value of n are explained in Section 1.5.

1.4.3 Centre of Symmetry

A centre of symmetry is a point where inversion through that point produces an identical arrangement. The operation of inversion moves the point with coordinates ( x , y , z ) to the position (− x , − y , − z ). For instance, in Figure 1.3(see also Figure 3.17), if we stood at the centre of the unit cell (coordinates картинка 74, картинка 75, картинка 76) and looked in any direction [ uvw ], we would find an identical outlook if we looked in the direction картинка 77. Clearly, in a lattice, all lattice points are centres of symmetry of the lattice. This follows from Eq. (1.21), since u , v , w can be positive or negative. Of course, since the origin of a set of lattice points can be arbitrarily chosen in a given crystal structure, we must not assume that, in a given crystal with a centre of symmetry, the centres of symmetry necessarily lie where we have chosen to place the lattice points.

1.4.4 Reflection Symmetry

The fourth symmetry is reflection symmetry. The operation is that of reflection in a mirror. Mirror symmetry relates, for example, our left and right hands. The dotted plane running normal to the paper, marked m in Figure 1.12, reflects object A to A′, and vice versa. A′ cannot be moved about in the plane of the paper and made to superpose on A. The dotted plane is a mirror plane. It should be noted that the operation of inversion through a centre of symmetry also produces a right‐handed object from a left‐handed one.

Figure 112Reflection symmetry 15 Restrictions on Symmetry Operations All - фото 78

Figure 1.12Reflection symmetry

1.5 Restrictions on Symmetry Operations

All crystals show translational symmetry. 8A given crystal may, or may not, possess other symmetry operations. Axes of rotational symmetry must be consistent with the translational symmetry of the lattice. A onefold rotation axis is obviously consistent. To prove that in addition only diads, triads, tetrads and hexads can occur in a crystal, we consider just a two‐dimensional lattice or net.

Let A, A′, A″, … in Figure 1.13be lattice points of the mesh and let us choose the direction AA′A″ so that the lattice translation vector tof the mesh in this direction is the shortest lattice translation vector of the net. Suppose an axis of n ‐fold rotational symmetry runs normal to the net at A. Then the point A′ must be repeated at B by an anticlockwise rotation through an angle α = A′AB = 2 π / n . Also, since A′ is a lattice point exactly similar to A, there must be an n ‐fold axis of rotational symmetry passing normal to the paper through A′. This repeats A at B′ through a clockwise rotation, as shown in Figure 1.13. That these two rotations are in opposite senses does not matter – they are both a consequence of the n ‐fold axis of rotational symmetry under consideration.

Figure 113Diagram to help determine which rotation axes are consistent with - фото 79

Figure 1.13Diagram to help determine which rotation axes are consistent with translational symmetry

B and B′ define a lattice row parallel to AA′. Therefore, the separation of B and B′ by Eq. (1.12) must be an integral number times t. Call this integer N . From Figure 1.13the separation of B and B′ is ( t − 2 t cos α ). Therefore, the possible values of α are restricted to those satisfying the equation:

Crystallography and Crystal Defects - изображение 80

or:

(1.22) Crystallography and Crystal Defects - изображение 81

where N is an integer. Since −1 ≤ cos α ≤ 1 the only possible solutions are shown in Table 1.1. These correspond to onefold, sixfold, fourfold, threefold, and twofold axes of rotational symmetry. No other axis of rotational symmetry is consistent with the translational symmetry of a lattice and hence other axes do not occur in crystals. 9

Table 1.1Solutions of Eq. (1.22)

N −1 0 1 2 3
cos α 1 картинка 82 0 картинка 83 −1
α 60° 90° 120° 180°

Corresponding to the various allowed values of α derived from Eq. (1.22), three two‐dimensional lattices, also known as nets or meshes, are defined. These are shown as the first three diagrams on the left‐hand side of Figure 1.14. It should be noted that the hexad axis and the triad axis both require the same triequiangular mesh, the unit cell of which is a 120° rhombus (see Figure 1.14c).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Crystallography and Crystal Defects»

Представляем Вашему вниманию похожие книги на «Crystallography and Crystal Defects» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Crystallography and Crystal Defects»

Обсуждение, отзывы о книге «Crystallography and Crystal Defects» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x