Anthony Kelly - Crystallography and Crystal Defects

Здесь есть возможность читать онлайн «Anthony Kelly - Crystallography and Crystal Defects» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Crystallography and Crystal Defects: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Crystallography and Crystal Defects»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

The classic book that presents a unified approach to crystallography and the defects found within crystals, revised and updated This new edition of
explains the modern concepts of crystallography in a clear, succinct manner and shows how to apply these concepts in the analyses of point, line and planar defects in crystalline materials. 
Fully revised and updated, this book now includes:
Original source references to key crystallographic terms familiar to materials scientists Expanded discussion on the elasticity of cubic materials New content on texture that contains more detail on Euler angles, orientation distribution functions and an expanded discussion on examples of textures in engineering materials Additional content on dislocations in materials of symmetry lower than cubic An expanded discussion of twinning which includes the description and classification of growth twins The inclusion and explanation of results from atomistic modelling of twin boundaries Problem sets with new questions, detailed worked solutions, supplementary lecture material and online computer programs for crystallographic calculations. Written by authors with extensive lecturing experience at undergraduate level,
continues to take its place as the core text on the topic and provides the essential resource for students and researchers in metallurgy, materials science, physics, chemistry, electrical, civil and mechanical engineering.

Crystallography and Crystal Defects — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Crystallography and Crystal Defects», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

For case (ii), we can again choose n Ato be [001]. n Bcan be chosen to be a vector such as:

(1.38) Crystallography and Crystal Defects - изображение 108

Therefore, in Eq. (1.30):

(1.39) and so 140 ie γ 120 γ 240 and n Cis a unit vector parallel to - фото 109

and so:

(1.40) ie γ 120 γ 240 and n Cis a unit vector parallel to 111 making an - фото 110

i.e. γ = 120°, γ ′ = 240°, and n Cis a unit vector parallel to [111], making an angle of 54.74° with the fourfold axis and 35.26° with the twofold axis. This arrangement is shown in Figure 1.17b, again with the original axes marked. It should be noted that the presence of the tetrad at A automatically requires the presence of the other triad axes (and of other diads, not shown), since the fourfold symmetry about A must be satisfied. The triad axes lie at 70.53° to one another.

As a third example, suppose that the rotation about n Ais a hexad, so that α = 60° and α /2 = 30°, and suppose the rotation about n Bis a tetrad, so that β = 90° and β /2 = 45°. Under these circumstances, Eq. (1.32) becomes:

(1.41) Since n A n Bhas to be less than 1 and cos γ 0 because from Table - фото 111

Since nn Bhas to be less than 1, and cos картинка 112 γ ≥ 0, because from Table 1.1permitted values of γ are 60°, 90°, 120° and 180°, it follows that there are no solutions for n Aand n Bin Eq. (1.41)for Statement (1.33)to be valid. Therefore, we have shown that a sixfold axis and a fourfold axis cannot be combined together in a crystal to produce a rotation equivalent to a single sixfold, fourfold, threefold or twofold axis.

Statement (1.33) and Eq. (1.35)can be studied to find the possible combinations of rotational axes in crystals. The resulting permissible combinations and the angles between the axes corresponding to these are listed in Table 1.2, following M.J. Buerger [7].

Table 1.2Permissible combinations of rotation axes in crystals

Axes α β γ u v w System
A B C
2 2 2 180° 180° 180° 90° 90° 90° Orthorhombic
2 2 3 180° 180° 120° 90° 90° 60° Trigonal
2 2 4 180° 180° 90° 90° 90° 45° Tetragonal
2 2 6 180° 180° 60° 90° 90° 30° Hexagonal
2 3 3 180° 120° 120° 70.53° 54.74° 54.74° Cubic
2 3 4 180° 120° 90° 54.74° 45° 35.26° Cubic

u is the angle between n Band n C, v is the angle between n Cand n A, and w is the angle between n Aand n B.

In deriving these possibilities from Eqs. (1.33) and (1.35), it is useful to note that cos −1 картинка 113= 54.74°, cos −1 картинка 114= 35.26°, and cos −1(1/3) = 70.53°. The sets of related rotations shown in Table 1.2can always be designated by three numbers, such as 222, 233, or 234, each number indicating the appropriate rotational axis.

1.7 Crystal Systems

The permissible combinations of rotation axes, listed in Table 1.2, are each identified with a crystal system in the far right‐hand column of that table. A crystal system contains all those crystals that possess certain axes of rotational symmetry. In any crystal there is a necessary connection between the possession of an axis of rotational symmetry and the geometry of the lattice of that crystal. We shall explore this in the next section, and we have seen some simple examples in two dimensions in Section 1.5. Because of this connection between the rotational symmetry of the crystal and its lattice, a certain convenient conventional cell can always be chosen in each crystal system. These systems are listed in Table 1.3, in which the name of the system is given, along with the rotational symmetry operation or operations which define the system and the conventional unit cell, which can always be chosen. This cell is in many cases non‐primitive; that is, it contains more than one lattice point. The symbol ≠ means ‘not necessarily equal to’. The general formula for the volume, V , of the unit cell of a crystal with cell dimensions a , b , c , α , β and γ is:

(1.42) see Problem 117 Table 13The crystal systems System Symmetry Conventional - фото 115

(see Problem 1.17).

Table 1.3The crystal systems

System Symmetry Conventional cell
Triclinic No axes of symmetry abc ; αβγ
Monoclinic A single diad abc ; α = γ = 90° < β
Orthorhombic Three mutually perpendicular diads abc ; α = β = γ = 90°
Trigonal A single triad Tetragonal A single tetrad a b c α β γ 90 Hexagonal One hexad - фото 116
Tetragonal A single tetrad a = bc ; α = β = γ = 90°
Hexagonal One hexad a = bc ; α = β = 90°, γ = 120°
Cubic Four triads a = b = c ; α = β = γ = 90°

aRhombohedral unit cell.

bThis is also the conventional cell of the hexagonal system.

Particular note should be made of the trigonal crystal system in Table 1.3. Here, there are two possible conventional unit cells, one rhombohedral and one the same as the hexagonal crystal system. This is because some trigonal crystals have a crystal structure based on a rhombohedral lattice, while others have a crystal structure based on the primitive hexagonal lattice [12].

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Crystallography and Crystal Defects»

Представляем Вашему вниманию похожие книги на «Crystallography and Crystal Defects» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Crystallography and Crystal Defects»

Обсуждение, отзывы о книге «Crystallography and Crystal Defects» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x