Anthony Kelly - Crystallography and Crystal Defects

Здесь есть возможность читать онлайн «Anthony Kelly - Crystallography and Crystal Defects» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Crystallography and Crystal Defects: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Crystallography and Crystal Defects»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

The classic book that presents a unified approach to crystallography and the defects found within crystals, revised and updated This new edition of
explains the modern concepts of crystallography in a clear, succinct manner and shows how to apply these concepts in the analyses of point, line and planar defects in crystalline materials. 
Fully revised and updated, this book now includes:
Original source references to key crystallographic terms familiar to materials scientists Expanded discussion on the elasticity of cubic materials New content on texture that contains more detail on Euler angles, orientation distribution functions and an expanded discussion on examples of textures in engineering materials Additional content on dislocations in materials of symmetry lower than cubic An expanded discussion of twinning which includes the description and classification of growth twins The inclusion and explanation of results from atomistic modelling of twin boundaries Problem sets with new questions, detailed worked solutions, supplementary lecture material and online computer programs for crystallographic calculations. Written by authors with extensive lecturing experience at undergraduate level,
continues to take its place as the core text on the topic and provides the essential resource for students and researchers in metallurgy, materials science, physics, chemistry, electrical, civil and mechanical engineering.

Crystallography and Crystal Defects — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Crystallography and Crystal Defects», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Figure 18The plane hkl in a crystal making intercepts of a h b k and - фото 35

Figure 1.8The plane ( hkl ) in a crystal making intercepts of a/ h , b/ k and c/ l along the x ‐, y ‐ and z ‐axes, respectively

Thus, for example, the plane marked Y in Figure 1.9makes intercepts on the axes of infinity, 2 b and infinity, respectively. Taking the reciprocals of these intercepts gives h = 0, k = картинка 36and l = 0. Clearing the fractions gives h = 0, k = 1 and l = 0. Hence, the set of lattice planes parallel to Y is designated (010). The triplet of numbers describing the Miller index is always enclosed in round brackets. Similarly, the plane marked P in Figure 1.9has intercepts 1 a , 2 b and картинка 37 c . Therefore, taking the reciprocals of these intercepts, h = 1, k = картинка 38and l = 3. Clearing the fractions, we have (216) as the Miller indices. The indices of a number of other planes are shown in Figure 1.9. Negative values of the intercepts are indicated in the Miller index notation by a bar over the appropriate index (see the examples in Figure 1.9).

Figure 19Examples of various lattice planes in a crystal The indices of the - фото 39

Figure 1.9Examples of various lattice planes in a crystal. The indices of the planes P and Y are discussed in the accompanying part of the text in Section 1.2

The reason for using Miller indices to index crystal planes is that they greatly simplify certain crystal calculations. Furthermore, with a reasonable choice of unit cell, small values of the indices ( hkl ) belong to widely spaced planes containing a large areal density of lattice points. Well‐developed crystals are usually bounded by such planes, so that it is found experimentally that prominent crystal faces have intercepts on the axes which when expressed as multiples of a , b and c have ratios to one another that are small rational numbers. 4

1.3 The Weiss Zone Law

This law expresses the mathematical condition for a vector [ uvw ] to lie in a plane ( hkl ). This condition can be determined through elementary vector considerations. Consider the plane ( hkl ) in Figure 1.10with the normal to the plane Figure 110The plane hkl in a crystal making intercepts of a h b k - фото 40.

Figure 110The plane hkl in a crystal making intercepts of a h b k and - фото 41

Figure 1.10The plane ( hkl ) in a crystal making intercepts of a/ h , b/ k and c/ l along the x ‐, y ‐ and z ‐axes, respectively, together with the vector normal to ( hkl )

A general vector, r, lying in ( hkl ) can be expressed as a linear combination of any two vectors lying in this plane, such as Crystallography and Crystal Defects - изображение 42and Crystallography and Crystal Defects - изображение 43. That is:

(1.3) Crystallography and Crystal Defects - изображение 44

for suitable λ and μ . Hence, expressing картинка 45and in terms of a band c it follows that 14 If we reexpress this as r u a - фото 46in terms of a, band c, it follows that:

(1.4) If we reexpress this as r u a v b w c a general vector uvw lying in - фото 47

If we re‐express this as r= u a+ v b+ w c– a general vector [ uvw ] lying in ( hkl ) – it follows that:

(1.5) Crystallography and Crystal Defects - изображение 48

and so:

(1.6) Crystallography and Crystal Defects - изображение 49

which is the condition for a vector [ uvw ] to lie in the plane ( hkl ): Weiss zone law. 5It is evident from this derivation that it is valid for arbitrary orientations of the x ‐, y ‐ and z ‐axes with respect to one another.

Frequently, a number of important crystal lattice planes all lie in the same zone; that is, they intersect one another in parallel lines. For instance, in Figure 1.9the planes (100), картинка 50and (110) are all parallel to the direction [001]. They would be said to lie in the zone [001], since [001] is a common direction lying in all of them. The normals to all of these planes are perpendicular to [001]. This is not an accident – the normals are constrained to be perpendicular to [001] by the Weiss zone law.

To see why, we can make use of elementary vector algebra relationships discussed in Appendix 1, Section A1.1. Consider the plane ( hkl ) shown in Figure 1.10. The vector normal to this plane, n, must be parallel to the cross product Hence 17 and so after some straightforward mathematical manipulation - фото 51. Hence:

(1.7) and so after some straightforward mathematical manipulation making use of the - фото 52

and so, after some straightforward mathematical manipulation, making use of the identities

it is apparent that nis parallel to the vector h a k b l c That is - фото 53

it is apparent that nis parallel to the vector h a* + k b* + l c*. That is:

(1.8) for a constant of proportionality ξ The vectors a b and c in Eq - фото 54

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Crystallography and Crystal Defects»

Представляем Вашему вниманию похожие книги на «Crystallography and Crystal Defects» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Crystallography and Crystal Defects»

Обсуждение, отзывы о книге «Crystallography and Crystal Defects» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x