Anthony Kelly - Crystallography and Crystal Defects

Здесь есть возможность читать онлайн «Anthony Kelly - Crystallography and Crystal Defects» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Crystallography and Crystal Defects: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Crystallography and Crystal Defects»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

The classic book that presents a unified approach to crystallography and the defects found within crystals, revised and updated This new edition of
explains the modern concepts of crystallography in a clear, succinct manner and shows how to apply these concepts in the analyses of point, line and planar defects in crystalline materials. 
Fully revised and updated, this book now includes:
Original source references to key crystallographic terms familiar to materials scientists Expanded discussion on the elasticity of cubic materials New content on texture that contains more detail on Euler angles, orientation distribution functions and an expanded discussion on examples of textures in engineering materials Additional content on dislocations in materials of symmetry lower than cubic An expanded discussion of twinning which includes the description and classification of growth twins The inclusion and explanation of results from atomistic modelling of twin boundaries Problem sets with new questions, detailed worked solutions, supplementary lecture material and online computer programs for crystallographic calculations. Written by authors with extensive lecturing experience at undergraduate level,
continues to take its place as the core text on the topic and provides the essential resource for students and researchers in metallurgy, materials science, physics, chemistry, electrical, civil and mechanical engineering.

Crystallography and Crystal Defects — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Crystallography and Crystal Defects», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

for a constant of proportionality, ξ . The vectors a*, b* and c* in Eq. (1.8)are termed reciprocal lattice vectors , defined through the equations:

(1.9) Crystallography and Crystal Defects - изображение 55

If the normal to the ( hkl ) set of planes is simply taken to be the vector

(1.10) Crystallography and Crystal Defects - изображение 56

the magnitude of nis inversely proportional to the spacing of the hkl planes; that is, it is inversely proportional to the distance OP in Figure 1.10(Section A1.2), irrespective of the orientations of the x ‐, y ‐ and z ‐axes with respect to one another.

Furthermore, it is evident that the scalar product of a normal to a set of planes, n, with a vector r= [ uvw ] lying on one of these planes must be zero. That is, r· n= 0. Writing out this dot product explicitly, we obtain the result:

Crystallography and Crystal Defects - изображение 57

which is the Weiss zone law. This demonstrates that the Weiss zone law is a scalar product between two vectors, one of which lies in one of a set of planes and the other of which is normal to the set of planes.

Given the indices of any two planes, say ( h 1 k 1 l 1) and ( h 2 k 2 l 2), the indices of the zone [ uvw ] in which they lie are found by solving the simultaneous equations:

(1.11) Crystallography and Crystal Defects - изображение 58

(1.12) Crystallography and Crystal Defects - изображение 59

Since it is only the ratios u : v : w which are of interest, these equations can be solved to give:

(1.13) There are other methods of producing the same result For example we could - фото 60

There are other methods of producing the same result. For example, we could write down the planes in the form:

We then cross out the first and the last columns and evaluate the 2 2 - фото 61

We then cross out the first and the last columns and evaluate the 2 × 2 determinants from (i) the second and third columns, (ii) the third and fourth columns, and (iii) the fourth and fifth columns:

(1.14) Therefore we find uvw k 1 l 2 k 2 l 1 l 1 h 2 l 2 h 1 h 1 k 2 h 2 - фото 62

Therefore, we find [ uvw ] = [ k 1 l 2− k 2 l 1, l 1 h 2− l 2 h 1, h 1 k 2− h 2 k 1]. A third method is to evaluate the determinant

(1.15) Crystallography and Crystal Defects - изображение 63

to determine [ uvw ]. The result is [ uvw ] = ( k 1 l 2− k 2 l 1) a+ ( l 1 h 2− l 2 h 1) b+ ( h 1 k 2− h 2 k 1) c.

Thus, for example, supposing ( h 1 k 1 l 1) = (112) and ( h 2 k 2 l 2) = ( we would have and so uvw 5 5 5 Like - фото 64), we would have:

and so uvw 5 5 5 Likewise given two directions u 1 v 1 w 1 - фото 65

and so [ uvw ] = [−5, −5, 5] ≡ картинка 66. Likewise, given two directions [ u 1 v 1 w 1] and [ u 2 v 2 w 2], we can obtain the plane ( hkl ) containing these two directions by solving the simultaneous equations:

(1.16) Crystallography and Crystal Defects - изображение 67

(1.17) Crystallography and Crystal Defects - изображение 68

Using a similar method to the one used to produce Eq. (1.14), we draw up the three 2 × 2 determinants as follows:

(1.18) to find that hkl v 1 w 2 v 2 w 1 w 1 u 2 w 2 u 1 u 1 v 2 u 2 v 1 - фото 69

to find that ( hkl ) = ( v 1 w 2− v 2 w 1, w 1 u 2− w 2 u 1, u 1 v 2− u 2 v 1). The method equivalent to Eq. (1.15)is to evaluate the determinant:

(1.19) It is also evident from Eqs 111and 112 the conditions for two planes - фото 70

It is also evident from Eqs. (1.11)and (1.12), the conditions for two planes ( h 1 k 1 l 1) and ( h 2 k 2 l 2) to lie in the same zone [ uvw ], that by multiplying Eq. (1.11) by a number m and Eq. (1.12) by a number n and adding them, we have:

(1.20) Therefore the plane mh 1 nh 2 mk 1 nk 2 ml 1 nl 2 also lies in uvw - фото 71

Therefore the plane ( mh 1+ nh 2, mk 1+ nk 2, ml 1+ nl 2) also lies in [ uvw ]. In other words, the indices formed by taking linear combinations of the indices of two planes in a given zone provide the indices of a further plane in that same zone. In general m and n can be positive or negative. If, however, m and n are both positive, then the normal to the plane under consideration must lie between the normals of ( h 1 k 1 l 1) and ( h 2 k 2 l 2): we will revisit this result in Section 2.2.

1.4 Symmetry Operators 6

The symmetrical arrangement of atoms in crystals is described formally in terms of operations of symmetry. The symmetry arises because an atom or group of atoms is repeated in a regular way to form a pattern. Any operation of repetition can be described in terms of one of the following four different types of pure symmetry element or symmetry operator.

1.4.1 Translational Symmetry

This describes the fact that similar atoms in identical surroundings are repeated at different points within the crystal. Any one of these points can be brought into coincidence with another by an operation of translational symmetry. For instance, in Figure 1.1a the carbon atoms at O, Y, N and Q occupy completely similar positions. We use the idea of the lattice to describe this symmetry. The lattice is a set of points each with an identical environment which can be found by inspection of the crystal structure, as in the example in Figure 1.1b. We can define the arrangement of lattice points in a three‐dimensional crystal by observing that the vector rjoining any two lattice points (or the operation of translational symmetry bringing one lattice point into coincidence with another) can always be written as:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Crystallography and Crystal Defects»

Представляем Вашему вниманию похожие книги на «Crystallography and Crystal Defects» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Crystallography and Crystal Defects»

Обсуждение, отзывы о книге «Crystallography and Crystal Defects» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x